
Scalable Mesh Networks
and

The Address Space Balancing Problem

Andrea Lo Pumo
Girton College

A dissertation submitted to the University of Cambridge
in partial fulfilment of the requirements for the degree of

Master of Philosophy in Advanced Computer Science

University of Cambridge
Computer Laboratory

William Gates Building
15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

Email: al565@cl.cam.ac.uk

June 8, 2010

Declaration

I Andrea Lo Pumo of Girton College, being a candidate for the M.Phil in Advanced

Computer Science, hereby declare that this report and the work described in it

are my own work, unaided except as may be specified below, and that the report

does not contain material that has already been used to any substantial extent for

a comparable purpose.

Total word count (excluding appendix): 14783

Signed:

Date:

This dissertation is copyright c©2010 Andrea Lo Pumo.

All trademarks used in this dissertation are hereby acknowledged.

Abstract

A Mesh Network is a network where every node acts as a router. Mesh networks
are reliable and efficient as they maximize the network throughput with multiple
paths and adopt alternative routes when a component fails. Moreover, mesh net-
work applications can optimize their performances by exploiting updated routing
informations.
Large scale versions of mesh networks are attractive both for enterprises, as a mean
to lower the management cost of their infrastructure, and also for communities,
as they can build and sustain city-wide wireless networks without requiring any
third party support.
Hierarchical routing protocols are natural candidates for implementing scalable
mesh networks. However, when the network is dynamic, the hierarchical topology
must be reconfigured after each event. In order to reduce the installation and
management costs of a hierarchical mesh network, we propose distributed proto-
cols for automatically creating and maintaining the routing architecture. Also, we
derive a set of rules for balancing the address space of the hierarchy, we study
their behavior under different network conditions and evaluate their performance
as the network becomes larger and more dynamic. We find that, in the worst case,
the number of address changes is upper-bounded by Õ(N), but in a network with
a constant churn, the number of reconfigurations increases at least linearly as N
grows.

Acknowledgements

I would like to thank my supervisor Jon Crowcroft for always clarifying my doubts,
pointing interesting papers and encouraging me throughout the entire project. I
am also deeply in debt with Eiko Yoneki for listening to my long explanations of
how the little nodes migrate back and forth and for speeding up my simulations
with her 8-CPUs machine. Finally, my gratitude goes to Tim Griffin for his frank
advice and optimism.

Contents

1 Introduction 1
1.1 Methodology . 3

2 Hierarchical Networks 5
2.1 Background and Related Works . 5
2.2 Hierarchical Model . 7
2.3 Routing . 10
2.4 Hierarchical Distributed Hash Table 12

3 Balancing the Address Space 15
3.1 Related Problems and Works . 15
3.2 Dynamic Balance . 17
3.3 Higher Levels . 21
3.4 Virtual Nodes . 22
3.5 Last Minute and Preemptive Balancing 24

4 Distributed Balancing Rules 29
4.1 The Memory of a Group . 29
4.2 Gnode Split . 31
4.3 Network ID and Network Merging 32

5 The Cost of Balance 34
5.1 Number of Migrations . 35
5.2 Simulation . 39

5.2.1 First Experiment . 40
5.2.2 Second Experiment . 45

5.3 Bounds on the Number of Migrations 48
5.4 Discussion . 51

6 Conclusion and Future Research 53

i

Chapter 1

Introduction

Mesh network architectures are reliable and efficient: every node acts as an inde-

pendent router and when a path becomes broken due to a link or a node failure,

the network automatically adopts alternative routes. Moreover, nodes can increase

their throughput by exploiting the presence of multiple paths.

Thanks to the high availability of low-cost wireless devices, Wireless Mesh Net-

works (WMN) are becoming the prevalent form of mesh networks. Their appli-

cations are numerous and include broadband home LANs, security surveillance

systems and metropolitan area networks for transportation systems[1]. WMNs

are also effective for extending Internet access to remote rural areas[4] and for

combating the digital divide. Among the various application scenarios, commu-

nity WMNs spanning one or more city neighborhoods are the most interesting.

In fact, they support almost all kinds of common network services, such as web

servers, multiplayer games, file sharing systems and VOIP, and they can be viewed

as a localized small scale version of the Internet. Currently, two major commu-

nity WMNs are the Athens Wireless Metropolitan Network[2], which reached 2000

nodes in 2008, and the Berlin Freifunk[3].

A large scale version of a mesh network would not only be similar to the cur-

rent Internet, it would be much better. In fact, in a mesh network every network

application can have access to and exploit the information regarding the routing

1

infrastructure. Thus, applications would be able to make more informed decisions

for improving latency and throughput. For example, multiple idle paths could be

simultaneously utilized for increasing the bandwidth between two nodes, or in the

case of content distribution networks, the clients themselves could decide what is

the nearest replica that is accessible through the least congested path. Routing

informations would be particularly useful for distributed services like P2P appli-

cations: the links of the virtual overlays could be directly replaced with physical

optimal paths.

However, with current routing protocols, mesh networks are still not ready for

growing to truly large sizes. In fact, they face serious scalability problems: as the

number of nodes grows the demand imposed on routers increases rapidly, until a

point where they are forced to dedicate all their resources. As an example, in 2009,

the mesh network of Internet autonomous systems comprised 350 thousands nodes

and, in order to execute the BGP protocol, a router needed 400Mbytes of memory

and a 1.1Ghz processor [32]. WMNs are even more sensitive: routers are generally

small devices with constrained resources, f.e. Access Points with 32Mbytes of

memory and a 200Mhz processor. Additionally, in WMNs the overhead caused by

routing packets can heavily decrease the network’s throughput[5].

A classical approach for solving the problem of routing scalability is to structure

the network into a hierarchical topology. The aggregation induced by the hierarchy

allows to achieve routing tables with small size and to reduce the routing update

overhead. However, for large dynamic networks where the evolution of the physical

topology is rapid and cannot be predicted, an automatic configuration of the hie-

rarchical topology becomes indispensable. In fact, nodes may be added or removed

frequently and the hierarchical constraints may affect other nodes and force their

reconfiguration. For example, in city-wide community WMNs, a non negligible

proportion of users might turn off their access points as soon as they do not need

anymore the network connection. A manual reconfiguration of such networks will

require a high cost and the response times will be too slow for guaranteeing an

appropriate continuity of service. A self-configuring mechanism is also useful for

more static mesh networks. In fact, it greatly reduces the network installation and

management costs. Also, in the case of a global attack or a system update, the

2

network can be quickly reconfigured from scratch.

In this dissertation, we present the design of distributed protocols for automa-

tically creating and maintaining hierarchical mesh networks. The dissertation is

structured as follows: in Chapter 2, we will introduce the background and related

works concerning hierarchical and wireless mesh networks. In Chapter 3, we will

derive a set of rules for solving the address space balancing problem and in the next

chapter, we will describe the protocols for implementing the rules in a distributed

way. Finally, in Chapter 5, we will evaluate the performance of the balancing rules

and study their behavior as the network becomes larger and more dynamic.

In the next section, we present a concise summary of the work undertaken in the

course of the MPhil project.

1.1 Methodology

The fundamental research goal of the project was to verify to what extent hierar-

chical architectures are applicable to large dynamic networks, such as city-wide

WMNs. To this end, we focused on designing distributed rules for automatically

reconfiguring the hierarchy after network changes and on evaluating their cost.

Initially, we decided to use some very simple and intuitive rules for obtaining a

first understanding of the dynamics involved in the topology maintenance and

for discovering their main issues. We wrote a high level simulator for aiding our

study of the rules on small topologies. As a result, we collected different examples

showing impossibility results and situations that were not correctly covered by a

naive approach.

The study of the simple rules helped us to exactly define our problem and to re-

formulate it in a more general form. After reviewing the literature, we understood

that it was strictly related to NP-complete problems of graph partitioning and

clustering. However, since we needed distributed and non-reset based protocols,

we could not apply any known solution.

Before proceeding further in the design of the rules, we theoretically investigated

3

the problem space, trying to understand what were the fundamental limitations

that constrained our design choices. Next, for analyzing the complex dynamics

generated by rules, we independently studied the gnode split and the gnode sa-

turation problems. Our main intuition for analyzing the gnode split problem was

that a cluster could be approximated as a random graph1 and that the expected

number of reconfigurations could be derived from the size of its giant connected

component. For the saturation problem, we analyzed the performance of the rules

on simple topologies first and then we generalized the results on arbitrary graphs.

For estimating the overall cost of the rules we derived a natural upper bound on

the number of reconfigurations due to dynamic network events. Obtaining a lower

bound was harder: the rules were too dependent on the underlying graphs and

it was not possible to obtain a meaningful estimate by theory alone. Thus, we

started to write a second simulator and designed an experiment for evaluating the

rules under churn conditions. This time, writing the software was simpler: we

proved that in order to get a lower bound it was sufficient to simulate the rules

only on the first level of the hierarchy. This simplification allowed us, not only to

get the lower bound, but also to study the behavior of the rules under different

network conditions.

Finally, writing the dissertation was a task in itself: we reassembled in a coherent

form all the notes written during the project.

1this intuition was later confirmed by simulations

4

Chapter 2

Hierarchical Networks

In a hierarchical network, the nodes are aggregated in groups (or clusters). Each

node knows a route to reach any node of its own group, but it does not store

all the routes required for reaching outside nodes. Routing update packets are

propagated as usual, but when they exit from a group they drop all its internal

information. This solution provides a marked saving in the routing table size and

in the overhead caused by routing updates.

2.1 Background and Related Works

Kleinrock and Kamoun[6] were the first to study the theoretical properties of

hierarchical networks. They showed that the introduced stretch1 is sufficiently

small for networks where the average distance grows as N v, for a fixed v > 0 and

where N is the number of nodes in the network. This is the case for wireless

1the stretch of a network measures the distortion caused by a non-shortest path routing
protocol and is defined as is

max
x 6=y

dR(x, y)
d(x, y)

where dR(x, y) is the length of the shortest path from x to y returned by the routing protocol,
while d(x, y) is the length of the actual shortest path

5

networks in a two-dimensional space[8]: when the node density is constant, the

average distance is proportional to N
1
2 .

The Internet itself is a hierarchical network of two levels where clusters are re-

presented by Autonomous Systems, and –as observed by Krioukov [7]– almost all

proposals for a clean-slate design of a scalable Internet architecture are based,

sometimes implicitly, on the concept of hierarchical routing. Also in wireless

networks the only routing protocols that have been able to scale are based on

hierarchical concepts[9].

Differently from wired networks, where the topology is designed a priori, in a

wireless network new nodes may be added or removed over time and if the nodes

are mobile, new links may be established or old ones may become broken. For

these reasons, the hierarchical topology must be dynamically constructed and

maintained. There are two main approaches for automatically configuring a hie-

rarchical topology: defining clusters as neighborhoods of a restricted subset of

nodes or creating clusters as groups of nodes of bounded size. The first approach

is adopted by single-level or multi-level clustering protocols. In single-level pro-

tocols like LANMAR[10], particular nodes called cluster heads are selected and

their neighborhood of radius r forms a cluster. Multi-level protocols, go one step

further by extending the hierarchy recursively: among the level l cluster heads,

some are elected as level l + 1 cluster heads. In MMWN[12], level l clusters are

viewed as single nodes and virtual links are defined between them in order to apply

link-state routing protocols. Instead, Safari[11] adopts distance vector-like routing

protocols.

The second approach for constructing hierarchical topologies is adopted by DART[14]

and Netsukuku[16]. Using a graph-partitioning protocol, nodes are merged in con-

nected groups of bounded size and, recursively, groups are merged into higher

level groups. Since the size of a group is bounded, it is possible to associate to

each node a routing address that requires a minimum amount of space, namely

O(logN) bits. In comparison, the addresses assigned by multi-level protocols re-

quire O(log2N) bits. No virtual links are defined between the groups and distance

vector-like protocols are used for pro-actively discovering the routes.

6

In multi-level protocols the main difficulty arises in electing and maintaining

cluster-heads. When a cluster head fails, all the members of the cluster will have

to choose another cluster head as their leader. This is particularly severe when

the cluster head belongs to a high level, since all the nodes of that level will have

to change their address and update their identity 7→ location mapping. The traffic

generated by these updates has been estimated as the dominant overhead factor

in multi-level cluster networks[19].

In DART and Netsukuku the groups do not depend on the existence of a single

node. However, in some situations a group may become saturated and new nodes

will not be able to join the network. In [15], the authors pose the problem of

designing a mechanism for avoiding the saturation of groups, but they leave it as

an open problem, which we call the address space balancing problem. This is the

focus of our project. In essence, it is necessary to balance the clusters each time

an upper bound is imposed on their size. For example, in MMWN[12] the authors

fix a preferred cluster size and, as a consequence, they are forced to split it in two

when its size becomes too big.

2.2 Hierarchical Model

The hierarchical model adopted in this dissertation assumes a multi-level topology

with L levels and groups of bounded size S. The only constraint imposed on

the logical topology is the connectivity constraint: all groups of all levels must

be internally connected. This model is strictly related to the DART/Netsukuku

hierarchical architecture, but it can be easily adapted to any other with connected

groups of bounded size.

We now give a formal description of the hierarchical model.

Definition 2.2.1. Let G = (V,E) be a connected graph representing the network.
Suppose that the maximum number of nodes that can ever join the network is
Nmax = SL, that is |V | ≤ Nmax, with S, L positive integers and S ≥ 2. Then we

7

can assign to each node x an address x of the form

x0.x1xL−1

where 0 ≤ xi ≤ S − 1 ∀i = 1, . . . , L− 1.
For routing purposes, we can allow situations where a node has more than one
address but we cannot assign the same address to different nodes. In other words,
a proper address assignment is a partial surjective function α : SL −→ V .

Define the following equivalence relation on V :

y ∼l z ⇔ y≥l = z≥l

where x≥i = xi . . . xL−1

that is, we are identifying nodes with the same l-suffix. We can represent the
equivalence class [y]l of y as follow:

[y]l = ∗.yl.yL−1

Note that [y]0 = {y} and [y]L = V .

For each level l and address x, we can then consider the subgraph of G induced
by the nodes of [x]l, which is the subgraph of G formed by all the nodes that have
the same l-suffix of x. We will call [x]l the network at level l of x.

By contracting the nodes of [x]l that have the same (l − 1)-suffix we obtain the
graph called the group node (gnode) of x of level l:

gl(x) = (Vl(x), El(x))

Vl(x) = [x]l/ ∼l−1 = {[y]l−1 | y ∈ [x]l}
[y]l−1 [z]l−1 ∈ El(x) ⇔ ∃y′ ∈ [y]l−1 ∃z

′ ∈ [z]l−1 : y′z′ ∈ E

In other words, we subdivide the network in groups and then we recursively
proceed to subdivide each group (see figure 2.1). An alternative representation of
the group nodes can be given using the language of trees: each gl(x) is a vertex
of a tree T and the elements of gl(x) are its children, or in other words, the nodes
with an address of the form ∗.yl . . . yL−1 are children of the node ∗.yl+1 . . . yL−1.

We will continue to call an element x ∈ gl a node, while we will call single nodes
the elements of the original graph G.

A group node g is of level l if there exists a node x such that g = gl(x). We will
write lvl(g) = l.

8

Figure 2.1: A hierarchical topology represented as a tree and as nested groups.
The figure represents the first two highest levels (L− 1, L− 2). The group size is
set to S = 3. Note that in the tree representation the links between the groups
are not shown.

The graph formed by all the gnodes of level l is:

[G]l = {gl(y) | y ∈ V }

The links in [G]l are those induced by the single nodes, i.e. g, h ∈ [G]l are linked
if a single node x ∈ g is linked to a single node y ∈ h. With Γl(g) we indicate the
neighborhood of g in the graph [G]l:

Γl(g) = {h ∈ [G]l | g, h are linked}

It will be sometimes useful to consider a further level L by fixing for all nodes x,
xL := η, where η is a constant called network id. The group gL(x), called network
group, is equal for all the nodes and contains all the group nodes of level L− 1.

The size of level m < l of a group gl is the number of m-level groups contained in

9

gl, that is:

sizel(gl) = 1

sizek(gl) =
∑
Y ∈gl

sizek(Y)

With size(gl) we indicate size0(gl), i.e. the number of single nodes contained in gl.
Sincem-level nodes in gl(x) have addresses of the form ∗.ym.ym+1 . . . yl−1.xl . . . xL−1,
it follows that sizem(gl) ≤ Sl−m and in particular size(gl) ≤ Sl.
We say that gl is full if size(gl) = Sl. gl is free if size(gl) = 0.

If h = ∗.yl . . . yL−1, then all the gnodes ∗.yi . . . yL−1, with i > l, will be called the
higher gnodes of h. We define up(h) = ∗.yl+1 . . . yL−1. Analogously, we will talk
of lower gnodes of h and, by abuse of notation, sometimes we will write y ∈ h to
indicate that y is any lower gnode of h.

A node y ∈ h is called a border node of h if it is linked to at least one node z ∈ h′,
with h′ 6= h and lvl(h) = lvl(h′). For example, in figure 2.1, the node ∗.2.3 is a
border node of ∗.3. The set bnode(h, h′) contains the border nodes in h that are
linked to h′. Notice that g, h ∈ [G]l are linked iff bnode(g, h) 6= ∅.

We will say that an address assignment forms a valid hierarchical topology if the
graph of each group node is connected, i.e.

gl(x) is connected ∀x ∈ V ∀l ∈ {1, . . . , L}

For this reason, we will call this requirement the connectivity constraint for group
nodes.

We will now proceed to describe the main components required for a complete
implementation of the above hierarchical network architecture. Later on we will
focus on the problem of constructing a valid address assignment for creating a
self-configuring network.

2.3 Routing

The main benefit of the connectivity constraint comes from the following proposi-
tion
Proposition 2.3.1. When the network is full, the routing table of each single node
contains at most LS = S logS N entries.

10

Proof : Before proceeding, we give the following definition: let x, y be two nodes,
then

hdl(x, y) = min {0 ≤ l ≤ L− 1 ≤ | x≥l+1 = z≥l+1}
If l = hdl(x, y), then gl+1(x) = gl+1(y) is the lowest gnode where both x and y

belongs. In the language of trees, gl+1 is the nearest common ancestor of x and y.

For all levels l = 0, 1, . . . , L− 1, and for each group g of level l, run a distributed
route discovery algorithm on the graph of g, in such a way that at the end of the
discovery, each route starting from a gnode g′ and contained in up(g′) is known
and stored by all the single nodes of g′. Moreover, for each l ≥ 1 and h ∈ Γl(x), x
must also know at least one border node b ∈ bnode(gl(x), h).
With the above protocol a packet can be correctly routed to any destination:
suppose x wants to forward a message to z. Let l = hdl(x, z). Both x and z
belong to g = gl+1(x) = gl+1(z). By the connectivity constraint, g is connected
and there is a path (gl(x), yl, . . . , gl(z)) in g connecting gl(x) to gl(z). Since the
routing protocol has explored all the gnodes of the networks, and in particular g,
the route (gl(x), yl, gl(z)) has been discovered and x knows it. Now, the problem
of routing the packet from x to z has been reduced to the problem of routing a
packet from x to any node of the group yl and then to z. To reach yl, x will
forward the message to its known border node b ∈ bnode(gl(x), yl).
We now count how many entries a single node x = x0 . . . xL−1 stores in its routing
table. With the above routing protocol, x stores a routing entry for each 1 ≤ l ≤ L
and y ∈ ∗.xl . . . xL. When the network is full, each gnode ∗.xl . . . xL has S elements,
thus the total number of entries becomes

| {(l, yl−1.xl . . . xL) | 1 ≤ l ≤ L, 0 ≤ yl−1 ≤ S − 1} | = LS
The space required for storing the routing table is thus

SL2 log2 S
bits. Note that in order to mark a node as a border node, x needs only an

additional bit.

We now give some remarks on how to implement such a routing protocol.

Any Distance Vector or Link-State routing protocol can be converted into a hie-
rarchical version as follow: when a node x = x1 . . . xL−1 receives a route (x, y, z),
where y is a neighbor of x and z is the destination, x will install the following
entry in its routing table:

gateway = y, destination = ∗.zl.zl+1 . . . zL−1

where l = min {0 ≤ l ≤ L− 1 ≤ | x≥l+1 = z≥l+1}

11

Distance Vector routing protocols do not require any further modification. In-
stead, Link State protocols are more complicated to implement, as they require an
appropriate definition for the weight of the virtual link that connects two groups.

With a hierarchical topology it is also possible to prevent loops of flooding packets
in a simple way: each time a node forwards a routing discovery packet, it appends
its address at the end of the packet. A node will discard a packet if it finds its
address in the appended list. There is no risk that the list will become too large:
when the packet exits from a group node, all its internal addresses are discarded,
i.e. when the packet contains a list of the form

∗ .x1
l .xl+1 . . . xL−1,

∗ .x2
l .xl+1 . . . xL−1

...

∗ .xml .xl+1 . . . xL−1

∗ .yl.yl+1.xl+2 . . . xL−1

it is rewritten to

∗ .xl+1 . . . xL−1

∗ .yl.yl+1.xl+2 . . . xL−1

This means that once a packet exits from a group node, it will not return inside.
A gnode can have a maximum of S nodes, thus its diameter is also bounded by S.
It follows that in the worst case the appended list will contain (S−1)L = O(logN)
entries.

2.4 Hierarchical Distributed Hash Table

The addresses of the hierarchical topology are used to encode connectivity informa-
tion and are thus not arbitrary. For this reason, a separated mechanism is needed
in order to give an identity to nodes, which is the actual name that network users
will have to refer to for contacting the nodes.

An easy way to solve the problem is to set up a standard Domain Name System
where few single nodes function as DNS servers. A much better way is instead
to build a Distributed Hash Table (DHT) that will store the associations between
names and addresses. In fact, a DHT equally distributes the load among the
nodes and provides a reliable service. Furthermore, we can optimize the DHT by

12

consistently building it upon the hierarchical topology (HDHT).

We now describe how to construct a HDHT. Let SL be the address space, Vt the set
of nodes of the network at time t and αt : SL −→ Vt the address assignment at time
t. Let K be the key space, which we can assume to be larger than the address space
(SL⊆K). The aim of a DHT is to maintain at each time t a function dt : K → D,
where D is the data space, f.e. strings of few bytes. The function dt is distributed
among the nodes of the network: each node stores in its memory a subset of dt, i.e.
a small set of mappings {k1 7→ dt(k1), k2 7→ dt(k2), . . . , km 7→ dt(km)}. Also, dt
varies through time: a node might request to change the mapping k 7→ d(k) to
k 7→ d′. The basic idea for building the HDHT is to let the node αt(h(k)) store
the mapping k 7→ d(k), where h : K → SL is a hash function. Thus, in order to
retrieve such a mapping or to change it, the nodes will contact the node αt(h(k)).
However, if the network is not full (Vt (SL), αt might be a partial function not
fully defined on SL, i.e. some addresses might not be assigned to any node. This
matter is solved with another dynamic function Ht : SL −→ dom(αt). Given an
address x, Ht returns another address Ht(x) that has been already assigned to a
node. We can view Ht(x) as the best approximation of x currently available in the
network. Ht can be implemented in a distributed way as follow:

1. define Ht(x) as the nearest address to x associated to an alive node:

Ht(x) = minargx′∈dom(αt) abs(x− x′)

(note2) x, x′ are considered as vectors and are compared using the lexico-
graphic order where the most significant digit is the last one (xL−1). abs is
defined component-wise.

2. thanks to the hierarchical topology, a node does not need to have the com-
plete knowledge of dom(αt), i.e. it does not need to know if for an address
there’s a corresponding alive node in the network. A node y = y0 . . . yL−1,
by looking at its routing table, knows what are the alive nodes of yl ∀l =
1, . . . , L. Let domy(αt) be the set of all the alive nodes known by y.

When a packet has to be sent to Ht(x), it will be routed to Ht(x) using a
greedy algorithm: when y receives the packet, it forwards it to its best known
approximation of h(k), i.e. to the group node with address

Hy
t (x) = minargx′∈domy(αt) abs(x− x′)

In sum, the node associated to a key k is αt(Ht(h(k)).

2there can be two addresses y, z that minimize abs(x− x′), in this case we pick min {x′, x′′}

13

Notice that, in terms of latency, a HDHT is more efficient than classical DHTs
like CHORD[17]. In fact, DHTs do not know any routing information and create
virtual overlays that do not match the routing topology. As a consequence, a
read/write request routed in the overlay does not follow an optimal physical path.
For instance, CHORD requires O(logN) forwardings between the nodes of the
overlay and if d is the average routing distance of the network, then the request
travels for O(d logN) hops. Instead, a HDHT is built on top of the routing infras-
tructure of the network. Thus, each read/write request is directly routed to the
destination and the number of hops is O(d).

The latency for querying and updating a mapping can be further optimized by
extending the HDHT: suppose the single node z wants to read or update a mapping
k 7→ d, where k is the key and d is the data. Instead of querying directly the node
h(k), z will do the following:

1. let h(k) = h0 . . . hL−1 and z = z0 . . . zL−1.

2. z will query in order:

h0.z1 . . . zL−1

h0.h1.z2 . . . zL−1

...

h0.h1 . . . hL−1 = h(k)

With the above schema, the HDHT is sliced in levels: a node will initially query
nodes in its same group of level 1, then nodes in its same group of level 2 and so
on, until it finds a result. Each time it goes up of one level, the destination node
may be potentially located farther, in terms of routing distance, and vice-versa,
finding an answer in lower levels may be more profitable.

14

Chapter 3

Balancing the Address Space

In this chapter, we will discuss how to construct and maintain a proper address

assignment that structures the network in a hierarchical topology.

3.1 Related Problems and Works

The problem of constructing a proper address assignment from scratch is not

easy, in fact, it is strictly related to the Bounded-Connected-Graph-Partitioning

(BCGP(G,M, k)) problem: given a graph G = (V,E) and two integers M,k > 0,

decide if there is a partition of its vertices V = V1∪ . . .∪Vm such that

1. m ≤M

2. each component Vi is connected

3. 1 ≤ |Vi| ≤ k ∀i = 1 . . .m

When k is fixed to 4, the above problem is called Bounded Component Spanning

Forest (BCSF) and it is known to be NP-Complete[18]. From this it follows that

the problem of deciding if there is a proper address assignment such that

1. each node has no more than one address

2. the number of gnodes of level 1 is no more than M

15

is NP-hard.

Different solutions and heuristics have been proposed for constructing a solution

to the BCGP problem or one of its variations. The solution presented in [21]

selects a spanning tree rooted at a random vertex. By traversing the tree from

the leafs, vertices are aggregated in connected components. The authors show

that in the case of Random Geometric Graphs their algorithm can achieve a small

number of common vertices between two components. The distributed version of

the algorithm works by creating the tree with flooding. Finally, their algorithm

is reset based: there are some cases where it is necessary to rebuild the clustering

from scratch.

By requiring that the size of all components is almost the same (0 ≤ |Vi − Vj| ≤
1 ∀i, j), the BCGP becomes closely related to the problem of Graph Partitioning,

which has been extensively studied for applications such as VLSI circuit layout,

image processing and matrix computations[22]. For generating an initial partition,

graph partitioning algorithms generally resort to either spanning tree techniques

or to graph growing. Graph growing algorithms initially form groups of size one

by selecting a random subset of vertices (seeds), afterwards neighboring vertices

are iteratively added, enlarging the groups. If a group becomes too large, the

procedure is recursively applied to the group.

Unlike the above works, in this project we are interested in an incremental, dis-

tributed solution to the address assignment problem: as the network evolves the

address assignment must be updated and the nodes must be able to change their

address without having a global knowledge of the network. Also, as explained in

Chapter 5, the update has to minimize the number of address changes.

We will now present our solution. First, in the section below, we will describe

how the address space balancing problem arises and why the design choices for

possible solutions are restricted. In the next two sections, we will show how the

higher levels are affected by a reconfiguration and why the use of virtual nodes is

necessary. Finally, in the last section we will present two balancing rules and we

will prove their correctness.

16

3.2 Dynamic Balance

In a distributed implementation of a self-configuring network, the nodes have to
choose their own addresses. For this reason, from now on, we will view the task of
finding a proper address assignment as an evolving distributed process. We will
say that a node joins a group node gl(y) when it chooses an address x such that
x ∼l y. Analogously, a node can leave a group and can migrate from a group to
another. Further, we say that x creates or allocates a gnode gl, if x joins gl and it
is its unique node, i.e. gl = {x}.

The connectivity requirement for having a valid hierarchical topology is a strong
constraint and it is the cause of the gnode split and of the address space balancing
problems.

The first problem arises when the removal of a node or a link disconnects a gnode
gl in multiple connected components gl = A1∪ . . .∪Am (gnode split). When this
happens, the connectivity constraint is not satisfied anymore. See figure 3.1 for an
example.

Figure 3.1: The removal of a link disconnects the group node A in two connected
component. The nodes of one component will have to change their membership
by migrating into another gnode B.

Notice that a split of a group ∗.gl . . . gL−1 may induce a split of one of its higher
gnodes ∗.gl′ . . . gL − 1, with l′ > l. This happens when gi is an articulation point1

in gi+1, ∀i = l, . . . , l′ − 1.

1a vertex x of a connected graph is an articulation point if there are two distinct nodes such
that all the paths that connect them pass through x

17

The only solution to the gnode split problem is to promptly repair the address
assignment: the single nodes of the components A2, . . . , Am are forced to change
their address.

The address space balancing problem arises when a new node joins the network:
Proposition 3.2.1. There are some address assignments such that a new node
cannot join to a gnode gl, even if size0(gl) is not full. In this case we say that gl
is saturated.
Moreover, the address space of the whole network can be saturated with just (S −
1)L+ 1 nodes.

Proof : Let gl = ∗.yl . . . yL−1 and suppose that size1(gl) is full, i.e. gl contains
all the possible gnodes of level 1, or in other words, ∗.y′.y2 . . . yL−1 has at least
one node, ∀0 ≤ y′ ≤ S − 1. Suppose further that a gnode h = ∗.y′1.y2 . . . yL−1 is
full. Finally, suppose that a node x is linked to nodes of h only. Since h is full,
in order to preserve the uniqueness of addresses, x cannot join to h. Moreover, by
the connectivity constraint, x will not be able to choose any other address of gl,
i.e. it will not be able to join to any ∗.y.y2 . . . yL−1, with 0 ≤ y ≤ S − 1.
The whole network gL can be saturated as described above, however we need much
less than | size1(gL)| = SL−1 nodes. In fact, we can saturate it as follow:
1. First, turn on only S − 1 nodes and to each of them assign an address of the

form ∗.y, with 1 ≤ y ≤ S − 1. Ensure also that they are connected.
2. Consider other S − 1 nodes and ensure that they form a connected graph. Let

them join the network, using an address of the form ∗.y.0, with 1 ≤ y ≤ S − 1.
3. continue recursively: ∗.y.0.0, ∗.y.0.0.0,. . . , until adding the nodes y.0.0 . . . 0.
4. finally, add the node 0.00
In this network, a node x that is only linked to nodes of the gnode ∗.0.0 . . . 0, will
not be able to join.

In order to avoid network saturation, we need to balance the address space, i.e.
the address assignment has to be updated over time in order to let any new node
acquire a proper address.

The next proposition shows that a balancing protocol can use only two operations
for reconfiguring a saturated network.
Proposition 3.2.2. Consider the situation described in Proposition 3.2.1, where
there are no more free gnodes left and a node x is forced to join to a full group h.
In this case, if there is a new proper address assignment, then we have only two
solutions for updating the old assignment:

1. either a node migrates from h

2. or a gnode g is emptied

18

With solution 1., x is then able to join to h, instead, with solution 2., x can re-
create the gnode g.

Let M2 be the minimum number of migrations required for applying the solution
2., and M1 that required for applying only the solution 1., then we have:

1. M1 = min {length(P)− 1 | P is a migration path starting from h }
where a migration path is defined in the proof below

2. M2 ≥ min {|g| | g gnode}

Proof : Consider any new proper assignment and let y1, . . . , yS be the nodes in
the group h of the old assignment. In the new assignment we have two cases:
either ∀i up(yi) = h′, or not.

In the former case, h′ is full and x has necessarily joined to a gnode g different
from h′. However, since x is only linked to the nodes of h′, by the connectivity
constraint x has to be the unique node of g. By hypothesis, all the groups were
not free, thus the old nodes of g have migrated, i.e. g has been emptied and x has
re-created it.
The number of required migrations is at least |g|. It can be larger, f.e. if the
migrations from g force other migrations. Thus, we have

M2 ≥ min {|g| | g gnode}

In the latter case, at least one node has migrated from h.
Call a path P starting from h a migration path if

P = (p1, . . . , pm), p1 = h,

∀i ≤ m− 1 pi is full, pi is a gnode linked to pi+1, lvl(pi) = lvl(p1),

pm is not full, lvl(pm) ≥ lvl(h)
If solution 2. is forbidden, there is no other choice than to repeatedly apply solution
1.. Since a node cannot migrate to a full group, a migration path is selected and
at least a node migrates from pi to pi+1, for all i ≤ m− 1. As we will see in Prop.
3.4.5, we can force the migration of exactly one node from pi to pi+1. Thus, the
number of migrations required is length(P)−1 and it is minimized by the shortest
migration path.

Remark 3.2.3. Between the two solutions presented in Prop. 3.2.2, we prefer to
adopt the first, for two main reasons:

1. The second solution forces all the nodes of a gnode g to migrate. This
implies that some other gnodes will increase their size. As a consequence,
the network may reach the saturation point quicker.

19

2. In a distributed implementation where a group does not know the size of
the other groups, the first solution requires less communication overhead: in
order to find a shortest migration path, the gnode h queries its surrounding
gnodes using a BFS2-like exploration, which is stopped as soon as a shortest
path is found. Instead, in the second solution, at least the size of all group
nodes has to be discovered3.

Remark 3.2.4. In Proposition 3.2.2, we described what are the necessary solutions
for fixing a saturated network. However, instead of fixing the network at the last
minute, we might try to avoid to fill up a group, unless it is strictly necessary,
and try to always keep the network saturation-free. We cannot predict in what
group the new nodes will join, i.e. we must assume that any group can increase its
size. Thus, at some point, we must decide if the size of a group is too large, and
force at least one node of the group to migrate. This means that we have to use
a condition ρ(|g|) that depends on the size of the group g, and possibly on other
parameters. When ρ(|g|) is true, a border node of g will be forced to migrate. The
simplest condition is obtained by fixing

ρ(|g|) ≡ (|g| > S)

In this case, a migration will occur only when g is full and a new node x joins. If
x joins to g only when it is forced to do so, then this becomes the same solution
1. of Prop. 3.2.2. Instead, by fixing

ρ(|g|) ≡ (∃h : |g| ≥ |h|+ 2)

a migration will occur only if g is bigger than one other gnode4. This condition
is the opposite of the previous one: as soon as possible a node will migrate.

We will later see in more details the above two balancing rules.

Notice that, in any case, the migration of a node from g can make ρ(|g|) false, but
ρ(|h|) true, for some other gnode h. Thus, in order to avoid infinite back and forth
migrations from g to h and from h to g again, migration paths become a necessity.

2Breadth First Search
3We say “at least”, because finding the group g that minimizes the number of migration is

not just a matter of knowing its size. In fact, in Prop. 3.2.2, min {|g| | g gnode} is a lower
bound of M2.

4if size(g) ≥ |h|+ 1 is used instead, a loop can occur: a node may endlessly migrate back and
forth from g to h

20

They are redefined as follow:

P is a migration path ⇔
P = (p1, . . . , pm), p1 = h, pi is a gnode linked to pi+1

∀i ≤ m− 1 ρ(|pi|) is true

ρ(|pm|) is not true

We can summarize this section by saying that the main operation used for updating
the address assignment is the migration of nodes along a migration path.

Finally, we note that not all nodes can migrate from a group.
Proposition 3.2.5. Suppose that all the lower gnodes of h are not free, then it is
possible to change the address of a node x ∈ h, only if x is a border node of h.

Proof : In fact, by the connectivity constraint, a node y ∈ h linked only to nodes
of h is forced to remain in h. Thus the only nodes that can migrate are the border
nodes. The vice-versa does not always hold, because even if y is a border node, if
all its neighboring gnodes are full, then it cannot join them.

3.3 Higher Levels

The use of migrations as a way to update the address assignment introduces further
complications. In fact, the migration of a border node b may affect the topology
of the higher levels, f.e. suppose that b is the unique border node in bnode(g, h).
If b migrates to f 6= h, then g will become linked to f but will loose its link with
h. In general, the following proposition holds:
Proposition 3.3.1. Let g, h ∈ [G]l. If a border node b migrates from g to h and
|g| ≥ 2, the resulting gnodes g′, h′ satisfy:

1 ≤ |Γl(g′)| ≤ |Γl(g)|
0 ≤ |Γl(h)| ≤ |Γl(h′)|

Also, g may lose one of its links and up(g) may become split, but [G]l remains
connected.

Proof : Since |g| ≥ 2 and b ∈ g, the connectivity constraint implies that b is
linked to at least one other node x ∈ g. Thus when b migrates, x will become a
border node and |Γl(g′)| ≥ 1.
Since the border node b is a new node in h′, it follows that |Γl(h′)| ≥ |Γl(h)|.
Equality holds when h was already linked to all the neighboring gnodes of b.

21

Finally, if h was the unique border node in bnode(g, h), then g′ is no more linked
to h′. Thus, |Γ(g′)| < |Γ(g)|.
Let Γ(g) = {h1, . . . , hm}, with h = h1. [G]l remains connected because a broken
link (g, hi) can be replaced by the path (g, h1, hi). However, if h1 /∈ up(g), then
(g, h1, hi) is not a path contained in up(g). If this was the only path connecting g
to hi, then up(g) becomes split.

However, migrations do not affect the topology of the lower levels.
Proposition 3.3.2. Suppose that a gnode g of level l migrates, then the graph
[G]l−1 does not change, and the new [G]l is isomorphic to the old one.

Proof : This follows directly on how the gnodes migrate. Let g = ∗.gl . . . gL−1.
When g migrates, it will assume another address of the form ∗.g′l . . . g′L−1, thus
a node of level l − 1 will change its address from x = ∗.gl−1.gl . . . gL−1 to x′ =
∗.gl−1.g

′
l . . . g

′
L−1. If a single node was a member of x it will still be a member of

x′. In other words, the “inside” of gl−1 has not changed. Thus, the links between
∗.gl−1 the others ∗.hl−1 ∈ [G]l−1 are still the same. (What could have changed are
the links between ∗.gl+1 and another ∗.hl+1.)
Finally, [G]l is isomorphic to [G′]l because their only difference is the name of the
gnode ∗.gl, which has been changed to ∗.g′l.

3.4 Virtual Nodes

In this section, we present two examples showing that workarounds are sometime
necessary. At the end, we introduce virtual nodes as our chosen workaround.

First, we begin by observing that it is not always possible to solve the address
balancing problem, i.e. in some cases, some nodes of the network will not be able
to join.
Example 3.4.1. Not all graphs admit a proper address assignment.

Proof : Consider the string topology formed by N = SL > 1 nodes, that is, if the
nodes are v1, . . . , vN , then vivi+1 ∀i = 1, . . . , N − 1 are all the edges. Now, attach
a dangling node q to vS, i.e. vSq is a link. This network does not have a proper
address assignment.
Suppose by contradiction that it has one.
First observe that since the network is full (N = SL), all the gnodes of any level
are full too, i.e. all the addresses have been used and

|g| = S ∀g ∈ Gnodes (1)

Since all nodes have an address, vS ∈ g for some gnode g of level 1. Let j be such

22

that
j = min {i = 1, . . . , S | vi ∈ g}

Consider the case where j > 1. We have,
v1, . . . , vj−1 /∈ g (2)

Let H⊆{v1, . . . , vj−1} be a maximal subset such that ∀x, y ∈ H : g1(x) = g1(y),
that is all the elements in H are in the same level 1 gnode and all the other vi /∈ H
are not. Since |H| ≤ j − 1 < S, by (1) it follows that H cannot be a complete
gnode, that is
∃w /∈ H : g1(w) = g1(x) ∀x ∈ H
H is by definition maximal ⇒ w /∈ {v1, . . . , vj−1} ⇒ w = vj+h

it is not possible that w = vj, otherwise g1(H) = g1(vj) = g and this is in contrast

with (2)

⇒ w = vj+h, h > 0
so, we have found a w which is in the same group of the elements in H, but is

not linked to any of them. This contradicts the connectivity constraint.
Consider now the case where j = 1. Since |g| = S, we have

{v1, . . . , vS} = g (3)
Now recall that the dangling node q is linked only to vS, thus by the connecti-

vity constraint, the only gnode where it can belong to is g = g1(vS). But this
contradicts (3).
In any case, we have shown a contradiction. Therefore there are no proper address
assignments.

Example 3.4.2. Reaching a valid assignment is sometime impossible through
migrations.

Proof : Consider the case where a group g has only one border node b with a
group h. Suppose also that b is forced to migrate to h. If b is an articulation point
of g, then its migration will disconnect g. Suppose h is full, then one component
of g might not be able to follow b and migrate to h and it will remain completely
disconnected from the network.

Definition 3.4.3. Clearly, the problems exposed in the above two examples can
be solved at the cost of increasing the parameter S. Another workaround is to add
new links: suppose a migrating node b splits a group g, then virtual links will be
established between the old neighbors of b belonging to g. In this way, g remains
connected. A virtual link between x, y ∈ g is removed when x or y leaves g, or
when a new link reconnects g.

An equivalent workaround is to add a new node: when the node b migrates from
g to h, it assumes two addresses and belongs at the same time to g and h. In
g, b is seen as a virtual node, with a non standard address of the form b′ =

23

∗.(S + k).gl+1 . . . gL−1. The virtual node b′ does not act as a border node, i.e. it
does not maintain links with nodes outside g, and when its neighbors leave g or g
becomes reconnected, it is removed from the network.
Remark 3.4.4. Creating virtual nodes in g can be still seen as changing the param-
eter S, but only locally to g. In fact, we allow the size |g| to be greater than S.
As a consequence, using virtual nodes/links we are effectively enlarging the size of
the routing table of some nodes.

With the use of virtual links, the following proposition holds.
Proposition 3.4.5. If one node migrates from a group, the group will not be
disconnected and no other migrations will occur.

Although, there are pathological cases where an arbitrary number of virtual nodes
are added, we will later see in simulations that their use is rarely needed for random
networks with L = 1.

3.5 Last Minute and Preemptive Balancing

In this section, we will fully describe two balancing rules and we will prove their
correctness by showing that any new node can join to the network if there is free
space.

The two balancing rules presented in Remark 3.2.4 adopt two different strategies,

1. Last-Minute: the addresses of some nodes are changed only if the network is
saturated and a new node cannot join,

2. Preemptive: at each network event, the addresses of some nodes are changed
so that a new node can immediately join without requiring a further recon-
figuration of the network.

The Preemptive strategy seems attractive because the network is constantly kept
saturation-free, however it also requires a migration each time a new node joins
or leaves the network. Instead, the Last-Minute rule will force one migration only
when necessary.

We first describe the Preemptive Balancing rule (PB-rule) and later the Last
Minute rule (LM-rule).

The PB-rule can be succinctly stated as follow: for any level l, find a shortest
migration path with a smallest gnode at its end. In details:

24

1. At first fix l = L− 1, and iteratively apply the following procedure, lowering
l by one each time it ends, until l = 1.

2. For any gnode h of level l (h ∈ [G]l), let Γ(h) = Γl(h).

3. If all the neighbors y ∈ Γ(h) are such that |h| ≤ |y|, then stop. Otherwise,

4. if there’s any neighbor y such that |h| ≥ |y|+ 2, then consider y′ s.t.

y′ = minarg |y|, where y ranges in {y ∈ Γ(h) | |h| ≥ |y|+ 2}

let exactly one node migrate from h to y and stop. Otherwise,

5. if there is a neighbor y ∈ Γ(h) s.t. |h| = |y|+ 1, then let g in [G]l be any of
the nearest gnodes to h such that |h| = |g| + 2. If such a g does not exist,
stop. Otherwise, let h = p1, p2, . . . , pm = g be a shortest path connecting h
to g. Notice that by definition of g, we have

p1 − 1 = p2 = · · · = pm−1 = pm + 1

Finally, for each i = 1, 2, . . . ,m− 1, let exactly one node from pi migrate to
pi+1. After the migrations, the new configuration will be such that

|p1| = |p2| = · · · = |pm|

Remark 3.5.1. When the PB-rule has selected a migration path p1, . . . , pm, the
migrations have to happen in the order p1 → p2, p2 → p3, . . . , . Otherwise,
suppose pi+1 → pi+2 happens before pi → pi+1, then the link pipi+1 becomes
broken if bnode(pi+1, pi) = {b} and b has migrated from pi+1 to pi+2. Thus, also
the migration path becomes broken.
Remark 3.5.2. The non-deterministic steps of the PB-rule (4. and 5.) can be made
deterministic by applying different heuristics:

1. suppose that the group g has more than one border node that can migrate.
In this case, the border node whose removal does not induce a split of the
gnode g is preferred.

2. Suppose that x can join to more than one gnode g1, . . . , gm. When it decides
to join to gi, it becomes one of its border nodes and some routes may use
x as a gateway to reach nodes in gi. Thus, in order to reduce the latency
stretch, the node x will prefer to join/migrate to the gnode gi such that
maxy∈gi

d(x, y) is minimized.

The main reason for using the Path Balancing rule is that it constantly keeps the
network saturation-free by satisfying the following property:

25

Proposition 3.5.3. When the PB-rule terminates at level l,

0 ≤ abs(|g| − |h|) ≤ 1 ∀g, h ∈ [G]l

Or in other words, the gnodes in [G]l have almost the same size.

Proof : Consider the set of all the shortest migration paths in [G]l:
NonIncrPaths([G]l) = {(p1, . . . , pm) | pi is linked to pi+1 in [G]l, |pi| ≥ |pi+1| ∀i}
AllMigrPaths([G]l) = {p ∈ NonIncrPaths([G]l) | |p1| ≥ |plength(p)|+ 2}
ShortMigrPaths([G]l) =

= {p ∈ AllMigrPaths([G]l) | length(p) = min length(AllMigrPaths([G]l))}

If ShortMigrPaths([G]l) is empty, then
∀g, h ∈ [G]l 0 ≤ abs(|g| − |h|) ≤ 1 (1)

is true and the PB-rule terminates. In fact, suppose that (1) is false, we show
that AllMigrPaths([G]l) 6= ∅:
let (g, h) be such that d(g, h) = min{d(g, h) | (g, h) ∈ [G]2l , abs(|g| − |h|) ≥ 2} (∗)
let g = p1, . . . , pm = h be a shortest path

If m = 2, (g, h) ∈ AllMigrPaths([G]l)

If m > 2 and by contradiction AllMigrPaths([G]l) = ∅, then by induction on i we have:

(p1, . . . , pi) ∈ NonIncrPaths, |pi| ≥ |g| − 1 ∀i ≤ m

in fact:

|pi+1| < |g| − 1, induction Hp⇒ (p1, . . . , pi+1) ∈ AllMigrPaths([G]l) = ∅
it cannot be that |pi+1| > |pi|, otherwise |pi+1| > |pi| ≥ |g| − 1⇒ |pi+1| ≥ |g| ⇒
⇒ (pi+1, . . . , h) contradicts the minimality of d(g, pm)

thus

{
(p1, . . . , pm) ∈ NonIncrPaths

abs(|p1| − |pm|) = abs(|g| − |h|) ≥ 2
⇒ (p1, . . . , pm) ∈ AllMigrPaths([G]l)

Suppose that ShortMigrPaths([G]l) is not empty. Define the imbalance of [G]l as:

I =
∑

p∈ShortMigrPaths([G]l)

I(p)

where I(p) = max{|p1| − |plength(p)| − 1, 0}
Notice that

G finite ⇒ | ShortMigrPaths([G]l)| <∞⇒ I <∞
I(p) > 0⇔ |p1| ≥ |plength(p)|+ 2

I = 0⇔ ShortMigrPaths([G]l) = ∅
The PB-rule selects one path p ∈ ShortMigrPaths([G]l) and, thanks to Prop.

3.4.5, it makes exactly one node migrate from pi to pi+1 ∀i = 1, . . . , length(p)−1.

26

Thus, I(p) and I decrease. Since I is finite, eventually, it becomes 0.

Theorem 3.5.4. If in the network there is a non full gnode in [G]l, with 1 ≤ l ≤
L− 1, then any new single node will be able to join.

Proof : Suppose that the new node x is linked to a single node h = h0 . . . hL−1. We
have two cases. In the first, hl′ is not full, with l′ ≥ l. Then, x can directly join by
taking an address of the form ∗.xl′−1.hl′ . . . hL−1.hL. The connectivity constraint
is satisfied because x is linked to h0 and thus also to hi ∀i.
In the second case, hi is full ∀i ≥ l, but by hypothesis, there is a non full
gnode g ∈ [G]l. In this case, let x assume a temporary address of the form
∗.xl−1.hl . . . hL−1, with xl−1 ≥ S (note5). This will change the size of hl to
|h′l| = |hl| + 1 = S + 1. Since the PB-rule applies at all levels, when it termi-
nates we have that

0 ≤ abs(|f | − |g|) ≤ 1 ∀f ∈ [G]l ⇒︸︷︷︸
|g|<S

|f | ≤ S ∀f ∈ [G]l (2)

After the migrations x belongs to some f and by (2) it can now assume a proper
address, with 0 ≤ xl−1 ≤ S − 1.

We now proceed to describe the Last Minute rule (LM-rule). We will later see
that it is more efficient that the PB-rule.
Consider the procedure of the PB-rule, then the LM-rule’s procedure is obtained
by substituting the size | · | operation with the following:

‖X‖ =

{
−1 |X| < S

|X| − S else

(note6) In this way, we have

|h| < S, |g| = S, |b| = S + h ⇒ ‖b‖ > ‖g‖ > ‖h‖

and a gnode will apply the balancing rule only when it becomes full.

The Theorem 3.5.4 still holds with the due changes, thus also the LM-rule avoids
saturation.
Remark 3.5.5. The LM-rule is a generalization of the PB-rule. In fact, if S in the
definition of ‖ · ‖ is replaced by a parameter S0, then with S0 = 0 we obtain the
PB-rule.

5we are temporary violating the constraint of using an address in {0, 1, . . . , S − 1}L
6we are improperly stating that the size of a gnode can become larger than S. What we really

mean is that if a gnode X is full and h nodes want to join in X, then |X| = S + h.

27

We end this chapter with the description of the rules that allow a new node to
join the network.
Definition 3.5.6. Suppose that a node x is turned on. If x is now connecting
multiple disconnected networks, then x will prefer to join to the largest one. x has
two strategies for joining to a network:

1. (Dispersive-rule) if there is a free gnode of level L− 1, then x will create it.
Otherwise, let λg be the length of the migration path that is created by the
balancing rules when x joins to g. Then, x joins to the neighbor g ∈ Γl(x)
that minimizes λg, where l is the maximum level s.t. [G]l contains a non-full
gnode.

2. (Aggregative-rule) even if there is a free gnode that x can create, x prefers
to join to a neighboring gnode, as described above.

Intuitively, the Aggregative rule is more costly because it moves the configuration
toward saturation. We will later see that simulations confirm this intuition.

28

Chapter 4

Distributed Balancing Rules

The balancing rules can be naturally translated to a distributed version: the only
information required for constructing a migration path is the size of the groups,
which can be known from the routing tables of their nodes. Moreover, the migra-
tion paths starting from a given group can be locally discovered using a BFS-like
exploration. The BFS search does not flood all the single nodes because a group
can be visited by selecting only one of its nodes. The discovery of migration paths
is started by border nodes: when b ∈ bnode(g, h) receives a routing update and
notices that ‖g‖ has become too large (or too small) with respect to ‖h‖, it will
try to create a migration path and migrate.

In the section below, we will see that the actions of multiple border nodes can be
coordinated with atomic distributed locks. Next, we will describe how the nodes
can repair a gnode split and how two separated networks can be merged once they
become connected.

4.1 The Memory of a Group

There are various situations where events need to be serialized:

1. when two or more nodes want to simultaneously join to the same group they
cannot act independently, otherwise there is the risk that they will choose
the same address;

2. the migration of a group node of level l ≥ 1 is not instantaneous: its single
nodes change address one by one. Suppose that g decided to migrate because
a condition Q was true. While the migration process runs, the condition Q

29

might become false and the remaining nodes in g will not have any reason
for continuing the migration. For example, a condition Q can be Q =“the
group g has become split”.

Also, if g is full, it cannot accept new nodes and this is true also when it is
migrating. However, since during the migration its size gradually decreases,
a new node might believe that g is not full and may join to it.

A solution to the above problems is to take one step further in viewing group nodes
of level l as nodes belonging to groups of level l + 1. We define the memory of a
gnode as the atomic distributed memory formed by its single nodes.

There are different ways for forming an atomic distributed memory. A simple one
is the following: let µ0(g) = min g be the single node in g with the lowest address.
Then the memory of g is identified with the memory of µ0(g) and atomicity is
achieved using simple locking mechanisms. Nodes in g are able to contact µ0(g)
with the same greedy routing adopted by the HDHT, i.e. they will contact in
order µL−1(g), µL−2(g), . . . , µ0(g). However, this solution relies on a single node:
when the address min g changes, the memory of g remains in an inconsistent state
until all its nodes discover the new min g propagated by the routing updates. We
suggest that at the cost of an increased communication cost, it should be possible to
realize a fault tolerant atomic distributed memory by applying the Paxos consensus
protocol[24] and the ideas presented in Etna[25]. We now briefly describe what
its main components would be: µ0(g) becomes the primary memory of g and it
serves and serialize the read/write requests. k nodes of g are elected as replicas,
each of them fetches and maintains a copy of the primary memory. In order to
ensure a uniform spatial distribution, the replicas are selected across the hierarchy
with the following function:

µl(g, k) :

If lvl(g) = 0, return {g}
else g is a gnode with elements g =

{
h1, . . . , h|g|

}
, with hi ≤ hi+1 ∀i

If k < |g|, return {µ0(h1), . . . , µ0(hk)}, where µ0(hi) = minhi

else let r = kmod |g|, d = k/|g|
return µ(h1, d+ 1) ∪ . . . ∪ µ(hr, d+ 1) ∪ µ(hr+1, d)∪ . . . ∪µ(h|g|, d)

Each time a read/write request is issued to the memory of g, the primary node
verifies the memory consistency by querying the replicas with the Paxos protocol.
If it receives more than (k+1)/2 ACKs from the replicas it will accept the request.
Using a counter mechanism, in the case of concurrent writes only the most up to
date write commits are accepted by the replicas. Every time the primary node

30

changes, i.e. µ0(g) points to another node x, the Paxos protocol populates the
primary memory by collecting the most up to date version from the majority of
replicas.

Finally, we describe how we can solve our serialization problems:

1. a node x that wants to join to g = ∗.gl . . . gL−1 by taking an address g =
∗.xl−1.gl . . . gL−1 will try to set to 1 the xl−1-th bit of the memory of gl. Since
its memory is atomic, no other node will be able to simultaneously set to 1
the xl−1-th bit, and thus join to gl.

2. similarly as above, a bit is set to 1 until the condition Q is true. In this way,
the nodes can atomically check if Q is true or not.

4.2 Gnode Split

Suppose a gnode h splits into connected components H1, . . . , Hm. Then in order
to satisfy the connectivity constraint of group nodes, all but one H1, . . . , Hm will
have to change address.
A node x ∈ Hi can recognize the splitting of h after the routing updates occur:
there will be a missing path to reach a node of another component. Using the
routing table the node x can deduce the number of nodes of its component. Also,
x can know minHi, the smallest address of the nodes in Hi. If x is a border node of
h, it acts as follow: if minHi 6= minh, x leaves Hi and migrate. After completing
the migration, it also tells its old neighbors in Hi to do the same. In this way, the
only component that does not migrate is the one that contains minh.

Notice that if Hi does not contain any border node, then Hi has been completely
disconnected from the network. In this case, nodes in Hi do not have to change
addresses.

We can optimize the above rule by minimizing the number of migrations, as follow:
for each component H1, . . . , Hm, the node minHi sends to a rendezvous node not
in h the size |Hi| along with its address minHi. The rendezvous node acts as a
hub and forwards each message to all the nodes minHi, i = 1, . . . ,m. The node
minHi will in turn forward the received message to the border nodes of Hi. In
this way, the border nodes know the size of all components and the new condition
for migration becomes minHi 6= minHj, where Hj is the component such that

|Hj| = max
1≤i≤m

|Hi|

minHj ≥ minHk ∀k s.t. |Hk| = |Hj|

31

In other words, Hj is the component with the maximum size and with the maxi-
mum minHj among the components of maximum size.
It follows that the only component that will not migrate is one of those with the
largest size.

4.3 Network ID and Network Merging

Up to now we have considered the whole network G as a connected network. How-
ever, for a complete distributed implementation we have to consider the general
case of a disconnected network. That is, when G is formed by the union of con-
nected networks G1, . . . , Gm. Lets consider the case where m = 2. Since G1, G2 are
disconnected, the nodes in each network have no way for coordinating the choice
of their addresses, thus a node in G1 can choose the same address of a node in G2.
If later on G1, G2 become connected, then the resulting network G1∪G2 will have
an address collision.
There are two ways for solving this problem:

1. Use an out of band communication between G1 and G2 for coordinating the
address assignment.

With this solution we are effectively creating virtual links between G1 and
G2 and we can always assume that the original network is connected.

2. Assign a unique ID to each distinct network.

This solution can be viewed as extending the address y0 . . . yL−1 of each node
to y0 . . . yL−1.η, where η is the network ID (netid).

All the nodes with the same netid will form a connected network. In other
words, the netid can be effectively viewed as a group node of level L.

We now analyze in more details how to assign a network ID to each node.

1. Each node v chooses a random number η0(v), with sufficiently many bits
such the probability that two nodes have the same η0(v) is negligible. Notice
that the netid will not be used for routing purposes and thus the number of
bits can be chosen more freely.

2. The network ID of a connected network G1 is then

η(G1) = min
v∈G1

η0(v)

32

The nodes of G1 can know η(G1) in a single flooding round: at first, each
node v sets η(G1) := η0(v), secondly it broadcasts its current known η(G1)
to its neighbors. After a node w receives a broadcast η, it sets η(G1) :=
min {η(G1), η}. If η(G1) has changed, w retransmits it to its other neighbors.

3. With the above procedure, ifG1 is a connected network, then all its nodes will
agree on a unique η(G1). Suppose now the two networks G1 and G2 become
connected. Suppose also that the nodes know an estimate of the size of their
original network. Then instead of choosing min {η(G1), η(G2)}, the nodes
will prefer the netid of the larger network. In this way, the number of flooded
nodes will be minimized. In particular, this is a necessary optimization when
G1 is formed by a single node x, i.e. when x joins the network G2.

4. Suppose that the node x ∈ G with the minimum netid η0(x), i.e. η0(x) =
η(G), leaves the network. A node will participate in a new round of netid-
discovery, only after it receives the routing update regarding the departure
of x.

This rule handles the case when the network G becomes disconnected into
components G1, . . . , Gm, due to a link or node failure. The nodes in the
components where x is missing will change their netid, so that at the end of
the netid-discovery each network Gi will have a distinct netid.

The above solution presents a drawback: when the node x with η0(x) = η(G)
dies, then a new netid-discovery round will occur and the entire network will be
flooded. By assuming that nodes can synchronize their clocks, we can damp this
problem with the following heuristic: the node with the highest uptime will be the
least likely to leave the network. To apply the heuristic, it suffices to change the
definition of η0(x) as follow:

η0(x) = (−(Time when x has been turned on), Random Number)

two pairs (t, r), (t′, r′) will be compared using the lexicographic order.

Finally, suppose that two separated networks G1, G2 become linked and that G1

is the one that will change netid. The two networks have also to resolve all the
address collisions. This is possible because the nodes bridging the two networks
will exchange their routing table. If they notice that two gnodes of level L − 1
have the same address, then the one in G1 will be alerted and its nodes will start
to migrate.

33

Chapter 5

The Cost of Balance

The main cost associated to the balancing rules is the number of migrations that
occur while the network evolves. The migration of a node is an expensive operation,
mainly for three reasons:

1. Each time a single node migrates, it has to advertise its new address by
updating the name→address mapping stored in the HDHT. Moreover, if the
node is storing some mappings of the HDHT, it has to transfer them to the
most appropriate node. Assuming that the HDHT equally distributes the
mappings and that at most a constant number of them are registered by each
node, a location update requires the transfer of O(logN) stored mappings1.
Thus if M is the total number of migrations, O(M logN) mappings will be
transferred.

2. The change of the routing address of a node affects higher layer transmission
protocols: a TCP connection between a node and a migrating node will
break. Thus additional countermeasures such as virtual circuits are required.

3. When a node x migrates from a group g to a group h, new routing updates
are necessary for discovering the paths connecting x to the other nodes of
h. Depending on the routing protocol implementation, it may be necessary
to update the routing tables of the higher levels, for example when x affects
the route stretch introduced by the groups g and h.

For all the above reasons, our ultimate aim is to understand what is the beha-
vior of the balancing rules when the network evolves and estimate the number of
migrations.

1the log N term derives from the extended HDHT where a same mapping is stored in L =
logS N nodes

34

Remark 5.0.1. It is possible to trade the handoff overhead caused by migrations
of high level gnodes with an increased communication cost for the HDHT. The
read/write procedure of the HDHT becomes the following: a node x = x0 . . . xL−1

stores its name 7→ address mapping only to the nodes with address hx,i(name) =
h0 . . . hi.xi+1 . . . xL−1 ∀i ≤ l, where l < L − 1. The mapping stored at node
hx,i(name) points to the partial address of the form x0 . . . xi. In this way, x does
not need to update the mapping when one of its higher gnodes ∗.xi . . . xL−1, with
i > l, migrates. Thus, the Sl+h mapping updates required by the migration of a
full gnode of level l + h are saved. However, in order to retrieve the address of x,
a node y that does not belong to ∗.xl . . . xL−1 will have to query all the possible
nodes with an address of the form h0 . . . hl−1.∗

We now give some results on the performance of the balancing rules. Then we will
proceed in an experimental evaluation through simulation.

5.1 Number of Migrations

Remark 5.1.1. In the case of node removal the PB-rule induces new migrations
when a gnode becomes too small in comparison with other gnodes, i.e. when the
condition of Proposition 3.5.3 does not hold anymore. Instead, the LM-rule does
not force any migration when the size of a gnode decreases.

We now examine what happens when new nodes are added in the network.
Proposition 5.1.2. Suppose that all the gnodes in [G]l have the same size a, with
S − 1 ≥ a ≥ 1. Suppose s nodes join to a gnode g ∈ [G]l, where s ≤ (S − a)N ,
N = |[G]l|.

The number of migrations caused by a balancing rule (PB or LM rule) is:

M(s) =
[s
D

] m∑
j=1

(j − 1)Dj +
m′∑
j=1

(j − 1)Dj +m′r′

35

where

m′ = max

{
m′ | (smodD)−

m′∑
k=1

Di ≥ 0

}
, r′ = (smodD)−

m′∑
k=1

Dk,

D =
m∑
i=1

Di = S0N, N = |T (g)| = |[G]l|

m = max
y∈[G]l

d(g, y), where d(x, y) is the hop distance

Di = S0Ei, Ei = | {h ∈ [G]l | d(g, h) = i} |

S0 =

{
1 PB-rule

S − a LM-rule

For the LM-rule the formula becomes simpler:

MLM(s) =
m′∑
j=1

(j − 1)Dj +m′r′

m′ = max

{
m′ | s−

m′∑
k=1

Di ≥ 0

}
, r′ = s−

m′∑
k=1

Dk

s ≤ (S − a)N

Notice that the LM formula does not depend on m, while the PB formula does.

Proof : The full proof is included in the appendix (pp. 58).

Corollary 5.1.3. Consider two different address assignments such that [G]l and
[G]l are two different graphs. Suppose also that all the gnodes, both in [G]l and in
[G]l, have the same number of nodes a, with S − 1 ≥ a ≥ 1. As in Prop. 5.1.2,
add s nodes in a gnode g ∈ [G]l and in a gnode g ∈ [G]l. Let M(s) be the number
of migrations induced in [G]l and M(s) those in [G]l.
If in [G]l there are more shortest paths than in [G]l, we have M(s) ≤M(s). More
precisely, using the same notations of Prop. 5.1.2, suppose

Ei = Ei + hi ∀i = 1, . . . ,max{m,m}

hi ∈ Z,
j∑
i=1

hi ≥ 0 ∀j ≤ max{m,m}

N = N

36

then

M(s) ≤M(s)

In other words, if [G]l is more connected than [G]l, it will induce less migrations.
The intuitive explanation is that the migration paths in [G]l are shorter and cause
less migrations than the equivalent paths in [G]l.

Proof : See the appendix (pp. 61).

Corollary 5.1.4. When adding s nodes in [G]l, the maximum number of migra-
tions is reached when [G]l is a linear path and all the nodes are added at one of
the two extremes. This is true both for the LM-rule and for the PB-rule.

Proof : In a linear path with n nodes we have m = n and
E1 = E2 = · · · = En = 1

instead, in any other graph with the same number of nodes we have m′ ≤ n and
1 = E ′1, E ′2 ≥ · · · ≥ E ′m ≥ 1, E ′m+1 = · · · = E ′n = 0

thus, by setting hi = E ′i − Ei, we have
E ′i = Ei + hi

and
j∑
i=1

hi ≥ 0 ∀j ≤ n

In fact,

hi ≥ 0 ∀i ≤ m⇒
j∑
i=1

hi ≥ 0 ∀j ≤ m

n =
n∑
i=1

E ′i =
n∑
i=1

(Ei + hi) =
n∑
i=1

Ei︸ ︷︷ ︸
=n

+
m∑
i=1

hi +
n∑

i=m+1

hi︸ ︷︷ ︸
=−(n−m)

⇒
m∑
i=1

hi = n−m⇒

⇒︸︷︷︸
hi=−1 ∀i>m

m+j∑
i=1

hi = n−m− j ≥ 0 ∀j ≤ n−m

Finally, we can apply the Corollary 5.1.3

Proposition 5.1.5. Under the hypotheses of Prop. 5.1.2, suppose that [G]l is a
linear path and g is one of the two extremes. Then, the number of migrations

37

caused by the PB rule is:

M(s) =
[s
N

] N(N − 1)

2
+
r(r − 1)

2
r = smodN

and by the LM rule is:

MLM(s) = S0
m′(m′ − 1)

2
+m′r′

m′ =

[
s

S0

]
, r′ = smodS0

S0 = S − a

Figure 5.1: Number of migrations of the LM-rule and the PB-rule when [G]l is a
linear path (Proposition 5.1.5) with parameters N = 20, S = 10, a = 1.

Proof : This follows directly from Prop. 5.1.2, because [G]l is a linear path of N
nodes and we have

m = N

Di = S0 · 1 ∀i
D = S0N

In the case of the PB-rule we have S0 = 1 and
m′ = max {m′ | r −m′ ≥ 0} = r, r′ = r − r = 0

38

Instead, for the LM-rule,

m′ = max {m′ | s−m′S0 ≥ 0} =

[
s

S0

]
, r′ = s−m′S0 = (smodS0)

S0 = S − a

5.2 Simulation

In this section, we study and evaluate the balancing rules through simulation. The
scenario of the simulation is based on a community city wireless mesh network
where each node is in a fixed position (f.e. it is located in a house) and the density
allows the coverage of the whole city, i.e. the resulting network graph is connected.

Random Geometric Graphs (RGG) are the simplest model of wireless mesh net-
works. In a RGG the nodes are uniformly distributed in the unit square [0, 1]2 and
a link is established between two nodes x, y if d(x, y) ≤ r0.
However, the geometric topology of a city wireless network is very different from
the unit square. If a node places its antenna behind a window, then at least half
of its coverage is shadowed by the building. Also, the height of buildings may vary
and antennas placed on the roofs may be shadowed by taller buildings.
In order to simplify the matter, while still taking into account the obstacles of a
city wireless network, we will assume that the links of a RGG are removed with a
fixed probability 1−pc. We will call the resulting graph a City Random Geometric
Graph (CRGG).
If pc = 1, a CRGG is still a RGG, instead if pc < 1, we can approximate it with
a standard random graph where an edge is established between two nodes with a
fixed probability pcπr

2
0 (Note2). For this reason, in our simulations we will resort

to random graphs only. Also, since we are interested in studying the behavior of
the rules under stress conditions, we will use small edge probabilities.

The assumption of having a constant probability of link establishment is justified
by the fact that wireless links between fixed nodes can become broken only due to
new obstacles and in a city we can consider this an infrequent event.
As a consequence, nodes addition and removal will be the only events occurring
in the network. In other words, at a given time a node can be either On or Off.

Under the above assumptions, we performed two different experiments.

2a further generalization of CRGGs are the Random Distance Graphs studied in [28].

39

5.2.1 First Experiment

For comparing various properties of the balancing rules we considered a simple
network evolution that induce all kinds of migrations, namely migrations caused
by splits, by network merging and by new joining nodes.

In details, the first experiment runs as follow:

1. A connected random graph G is generated with link probability p and Nmax

nodes. We ensure that G is connected by repeatedly generating p-random
graphs with the NetworkX Python library[30] until a connected graph is
found. A connected random graph will be found quickly if p is greater than
the critical threshold 1/N of random graphs. In fact, with high probability
the size of the giant component of a random graph increases exponentially
as p > 1/N increases and it becomes the full graph when p ≥ ln(N)/N [27],
[29].

2. Only the first level of the hierarchy is considered and the maximum number
of level 1 gnodes is set to ceil(Nmax/S), where S is the gnode size.

3. At the start of the simulations, all the nodes are turned Off.

4. Sequentially, a random node is turned On, the balancing rules are executed
and the number of migrations is counted.

5. When the number of On-nodes is Nmax, i.e. all the nodes joined the network,
we start the turn-Off phase: at each step we turn Off a node and count the
number of migrations.

In figure 5.2, we can see how a simulation of the first experiment evolves.
The network starts with 0 nodes, at each step a new node is added. On the Y
axis is reported the total number of migrations. When at step 1000 the network
becomes full, the simulation proceeds by removing a node at each step.

PB and LM Rules Comparison

For comparing the PB-rule against the LM-rule, we repeatedly run the first ex-
periment with parameters in the ranges 80 ≤ Nmax ≤ 100, 3/Nmax ≤ p ≤ 4/Nmax,
6 ≤ S ≤ 20.

For each generated graph, we used both the PB-rule and the LM-rule. In all
simulations, the number of migrations caused by the LM-rule (MLM) was never
greater or equal than those caused by the PB-rule (MPB) and on average, MLM

was 45± 11% less than MPB.

40

Figure 5.2: Evolution of the first experiment, with parameters Nmax = 1000,
Nmin = 1, p = 6/Nmax, S = 20.

These results show that the LM-rule is more efficient than the PB-rule. Note: in
all subsequents simulations we used the LM-rule only.

Aggregative and Dispersive Rules Comparison

Similarly as before, we compared the Aggregative-rule (A-rule) with the Dispersive-
rule (D-rule) (see section 3.5.6). As we expected, the A-rule is more costly. On
average, the D-rule generates 37 ± 24% less migrations of the A-rule and only in
8% of all simulations, the D-rule caused more migrations than the A-rule.

Migrations and Link Probability

In another simulation we varied the probability of link formation p = d/Nmax,
where d is the average degree of the graph. As shown in the figure 5.3, as p in-
creases, the number of migrations decreases. This is not surprising: as p increases,
nodes are more connected. A joining node is then linked to a greater number of
groups and it has a greater chance of finding a non-full group as a neighbor. Sec-
ondly, since it becomes more difficult to disconnect a group with a node removal,

41

the number of migrations due to a gnode split decreases too.

Since our aim is to study the rules under stress conditions, in all successive sim-
ulations we considered networks with low connectivity, by choosing 2/N ≤ p ≤
ln(N)/N .

Figure 5.3: The number of migrations as a function of the probability of link
formation of the generated random graphs. The parameters for this simulation
are Nmax = 100, S = 6, Nmin = 1.

Group Size

The maximum size S of a group node is a tradeoff parameter between the size
of the routing table and the latency stretch, but it also influences the number of
migrations M .
From figure 5.4, we can observe that when the size of a group becomes larger than
half of the number of nodes (100), the migrations begin to decrease. In fact, it
becomes increasingly difficult to disconnect a group due to a node removal (we will
explain why in the next section). Also, the migration paths decrease in length.

Finally, we observe that small values of S have another drawback: the number of
established virtual addresses becomes higher when S is small. This is shown in
figure 5.5.

42

Figure 5.4: The plot represents the number of migrations as a function of the group
size. The parameters for this simulation are: Nmax = 200, Nmin = 1, p = 4/Nmax.

Figure 5.5: The number of established virtual addresses depends on the size of the
group nodes. Smaller sizes force the creation of more virtual addresses.

Groups are Random Graphs

We repeated the simulation for 5000 times by varying the group size S and counted
how many edges E were contained in a full group node at the end of the network

43

formation. In figure 5.6, we can see the edge ratio p′ = E

(S
2)

plotted as a function

of S. As S becomes larger, p′ tends to the probability p of link formation of the
network graph. For S > 20, the relative error on all points is ≤ 1.5%, while on
70% of points it is ≤ 0.25%.

Since the error is small, p′ depends mainly on the size S and not on the underlying
process that generates the groups. For this reason, we can consider large groups
of size S as random graphs GS,p′(S).

We also notice that for all points p′ ≥ p, p′S ≤ pN (except 5 points) and p′S has
an increasing behavior as S grows. This can explain why larger groups are harder
to split: when h nodes are removed with a fixed probability from a random graph
GS,p′ , the remaining nodes form a GS−h,p′ graph and the expected size of its giant
connected component monotonically depends on its average degree p′(S − h).

Figure 5.6: Each point indicates the edge ratio of a full group with size S. The
parameters of the network graph are Nmax = 200, p = 3/Nmax. The bottom
constant line is y = p.

Virtual Addresses and Average Path Length

By considering all the data acquired from previous simulations, we counted how
many migrations force the creation of virtual addresses: of 157 · 106 simulated
migrations only 0.87% established new virtual addresses. We also observed that

44

the average migration path length is short: on average it is 2.00± 0.03 hops long.
This is not surprising: the average path length in random graphs is ∼ lnN , thus
only with large scale simulations it should be possible to notice higher migration
path lengths.

5.2.2 Second Experiment

Consider the boolean life function λx(t) =“node x is On at time t”. A node x is
stable if λx(t) = 1 ∀t, otherwise it is a churn node. The number of churn nodes
that change their On/Off status at step t is ∆t =

∑
x |λx(t)− λx(t+ 1)|.

In the second experiment, we wanted to study the behavior of the balancing rules
as the network becomes more and more chaotic. To this end, the experiment does
not emulate a single realistic life function, but rather it is such that ∆t and the
proportion of churn nodes can be varied linearly. The experiment is set up as
follow: Nmin nodes are considered stable, while the other Nmax − Nmin nodes are
marked as churn nodes. During the simulation the churn nodes are turned on and
off with a fixed probability and the migrations are counted. In details,

1. A connected random graph G is generated as in the first experiment.

2. Nmin nodes are turned on and the balancing rules are applied until the net-
work reaches a stable configuration. The migrations of this step are not
counted.

3. For MaxSteps times the following procedure is repeated: each churn node is
turned off with probability 1− pc or on with probability pc. The LM-rule is
applied and the number of migrations are counted.

Nmin determines the percentage of churn nodes in the network. The probability
of having k alive churn nodes at each step follows a binomial distribution and the
expected ∆t is:

E(∆t) = E

(
Nmax−Nmin∑

x=1

Ixt

)
= 2(Nmax −Nmin)pc(1− pc)

where Ixt = |λx (t+ 1)− λx (t) |,
P (Ixt = 1) = P (λx (t) = 1, λx (t+ 1) = 0) + P (λx (t) = 0, λx (t+ 1) = 1) = 2pc(1− pc)

At pc = 1/2 and Nmin = 0, there is the maximum expected number of On/Off
switches. This is directly reflected in the number of migrations: as shown in figure
5.7, they increase when pc gets near 1/2 and Nmin decreases.

45

Figure 5.7: At each simulation step, each of the Nmax−Nmin churn nodes is turned
on and off with probability Pr Churn. The gray intensity indicates the average
number of migrations per step (Migrations /MaxSteps) obtained at the end of the
simulation. The parameters used for this simulation are: Nmax = 200, S = 20, p =
4/Nmax.

M as a function of Nmax

In the next simulation, we studied how the number of migrations increases when
the network becomes larger.

We repeated the experiment by varying the number of nodes Nmax and by setting
Nmin = Nmax/k, for a fixed k > 0. In this way, the ratio of churn nodes is equal to
(Nmax −Nmin)/Nmax = 1− 1/k.

As shown in figure 5.8, the migrations per step increase almost linearly as Nmax

grows. This is also evident from their correlation coefficient (see table below),
which is almost 1.

k = Nmax/Nmin 2 3 4 5 6 7 8 9 10
Correlation Coefficient 0.90 0.94 0.97 0.97 0.98 0.99 0.99 0.99 0.99
Linear Best Fit Error 3.01 4.68 4.68 4.45 4.00 3.23 3.16 3.06 2.93
Angular Coefficient 0.06 0.12 0.16 0.17 0.19 0.20 0.20 0.21 0.21

M as a function of E(∆t)

In a next simulation, we calculated the average number of migrations M as a
function of the expected number of network changes E(∆t). By choosing pc = 1/2,
E(∆t) becomes (Nmax −Nmin)/2 and we can vary it linearly by changing Nmin.

46

Figure 5.8: Each point represents the average number of migrations M per step of
a network with Nmax nodes. Each line is obtained by fixing a different Nmax/Nmin

ratio. The parameters used for the simulation are: p = (ln(Nmax)−1)/Nmax, S =
20, MaxSteps = 100,

In the figure 5.9, we can observe that M increases sublinearly as the number of
stable nodes decreases. In other words, the addition of a new churn node influences
little the network. This is also reflected in the slow growth of the angular coefficient
of the lines in figure 5.8 (see the table above).

When Nmin > 240 (< 20% of churn nodes), the standard deviation of each data
point is ≤ 2. In this case, M depends lightly on the underlying graph and on the
particular nodes that switch their On/Off status. Instead, when the percentage of
churn nodes grows, the variance of M grows too. In other words, with high churn
the peculiar features of the underlying graph begin to matter more.

Gnode Split Migrations

There are two types of migrations: those caused by new nodes joining the network
and those caused by gnode splits induced by old nodes that leave the network.
Intuitively, the latter type is more costly: the number of migrations caused by a
new node is equal to the length of a migration path, which on average is –as we
have seen– rather short. Instead, a gnode split can force the migration of a large
part of a group.

47

Figure 5.9: Average number of migrations as a function of the expected number
of network changes E(∆t). The parameters used for the simulation are: Nmax =
300, S = 20, pc = 1/2, MaxSteps = 100

In a next simulation, we counted the number of migrations occurring due to a
gnode split (MS). In figure 5.10, we can see that when Nmin ≤ 250 (≥ 17% of
churn nodes), more than 60% of migrations are due to gnode splits only. When
Nmin ≥ 200, even though the average percentage MS/M decreases, the variance
increases notably.

5.3 Bounds on the Number of Migrations

In the previous simulations, we have considered a network subdivided in ceil(N/S)
groups of single nodes, ignoring the borders formed by levels higher than 1. This
gives an under-estimate of the actual number of migrations:
Proposition 5.3.1. Let M be the total number of migrations occurring in a net-
work after a sequence of events, using either the PB-rule or the LM-rule. Under
the same events, consider an application of the chosen balancing rule to [G]1 only,
or in other words let only single nodes migrate. Let M ′ be the relative number of
migrations.
We have:

M ′ ≤M

48

Figure 5.10: The Y axis represents the percentage of migrations due to gnode
splits: MS

M
100, where M is the number of migrations per step. The parameters

used for the simulation are: Nmax = 300, S = 20, pc = 1/2, MaxSteps = 100

Proof : The full proof is included in the appendix (pp. 62). The main idea is to
notice that, without the higher levels, nodes have more freedom to create group
nodes and there are no higher gnodes that can become split.

The following proposition gives an upper bound on the number of migrations.
Proposition 5.3.2. Consider a hierarchical network G with L levels, groups of
size S and Nmax = SL. Let M be the number of migrations caused by some network
events occurred at the same instant.

M is upper bounded as follow:

M ≤ 2δLNmax

where δ is the diameter of the network after the events.

If G is a random graph GNmax,p and p > 1/Nmax, on average we have

M ≤ 2
ln2(Nmax)

ln(pNmax) ln(S)
Nmax

49

Additionally, if pNmax ≥ e and S ≥ e, we have:

M = O(Nmax ln2(Nmax))

Proof : The balancing rules are applied at all levels, thus

M =
L−1∑
i=1

Mi

Mi = MJ,i +MS,i

where Mi is the number of single nodes that migrate for balancing [G]i, MJ,i

are the migrations caused by new nodes joining the network, while MS,i are those
caused by gnode splits.
Recall that for each migration of a node a migration-path P is established and the
number of migrations is length(P)− 1.
If P is a path in [G]i, with i ≥ 1, its length is upper bounded by the diameter of
[G]i. Also, [G]i can be viewed as a contraction of the original graph G, so

length(P) ≤ δ([G]i) ≤ δ(G) (1)

If at level i there is still a non-full gnode g (lvl(g) = i, |g| < S), a new joining single
node will cause a migration path in [G]i. When [G]i becomes full, i.e. |[G]i| = SL−i,
any further addition of nodes will cause migration paths in lower levels only. Thus,
at each level i at most SL−i migration paths can be established. Each migrating
group has at most Si single nodes, thus by (1) we have

MJ,i ≤ δSL−iSi = δNmax ∀1 ≤ i ≤ L− 1

MJ =
L−1∑
i=1

MJ,i ≤ (L− 1)δNmax

When a gnode g ∈ [G]i is split all the single nodes not belonging to the largest
component will migrate. The maximum number of single nodes of g is Si. In the
worst case, [G]i is full and all its groups are split, thus

MS,i ≤ Si|[G]i|δ ≤ SiSL−iδ = δNmax ∀1 ≤ i ≤ L− 1

MS =
L−1∑
i=1

MS,i ≤ (L− 1)δNmax

In sum we have:
M = MJ +MS ≤ 2δLNmax

Finally, the expected diameter of a random graph GNmax,p is[29]:

δNmax,p =
ln(Nmax)

ln(pNmax)

50

and since L = ln(Nmax)/ ln(S), we have

M ≤ 2
ln2(Nmax)

ln(pNmax) ln(S)
Nmax

Remark 5.3.3. The results of the second experiment (section 5.2.2) suggest that, if
S is fixed, in a network with a constant churn the number of level 1 migrations is
Ω(Nmax). Therefore, using proposition Proposition 5.3.1 we may conjecture that
in general M = Ω(Nmax). Finally, by the previous proposition we can conclude
that for connected random graphs:

Ω(Nmax) = M = Õ(Nmax)

5.4 Discussion

From the results obtained in this chapter we can draw the following conclusions.

As expected, for well connected networks the reconfiguration overhead is low.

Furthermore, the rules are not sensitive: the overhead becomes substantial only

with a high proportion of churn nodes.

The reconfiguration overhead is dominated by migrations caused by gnode splits

and it is minimized when the groups are internally well connected. This suggests

that a hierarchical topology is best suited for dynamic networks where the nodes

form physical well connected clusters and where the events are localized to them.

For example, in wireless mesh networks, nodes can be clustered by their geogra-

phical position. In these networks, rather than utilizing the distributed balancing

rules only, it should be more convenient to adopt a hybrid approach: for a first

time, the gnodes are formed with an offline graph partitioning algorithm that

minimizes the cut cost. In this way, the resulting groups will match the physical

clusters. Since the coarse topology does not change, no further applications of the

offline algorithm will be required and the balancing rules will be used to maintain

the internal topology of each cluster.

Finally, in a network with a constant churn, the number of migrations induced

by the balancing rules increases at least linearly as N grows and its worst case is

Õ(N), which is substantially no worse than the O(N) worst case of a centralized

51

reset-based configuration protocol.

52

Chapter 6

Conclusion and Future Research

Hierarchical routing is a classical approach for solving the problem of network sca-

lability. It has been intensively studied and has been successfully applied to many

scenarios. For this reason, the adoption of a hierarchical architecture represents

the first step in the exploration of the design space of scalable mesh networks.

In this dissertation, we studied what are the problems and the consequences of

adopting a hierarchical architecture for dynamic mesh networks. Although with a

hierarchical topology the routing tables are small and DHTs can be constructed

in a natural way, the task of incrementally updating the hierarchy becomes com-

plicated. Not only nodes have to change addresses when a group becomes dis-

connected, but also additional measures are required when new nodes join the

network. In order to address these problems, we derived the necessary balancing

rules and we described their distributed version. Finally, we analyzed the behavior

of the rules under different network conditions. As expected, well connected and

not very dynamic networks are easy to manage. In the worst case, the number

of address changes is upper-bounded by Õ(N), where N is the size of the net-

work. However, with a constant churn, the number of migrations increases at least

linearly as N grows.

The design space of scalable mesh networks is vast and there are many choices that

have to be researched further for discovering an optimal architecture. They can be

53

grouped in two fundamental directions. In the first one, we can continue to pursue

and optimize hierarchical approaches by exploring various tradeoffs. For example,

as explained in Remark 5.0.1, the handoff overhead caused by migrations can be

reduced at the cost of increasing the communication cost of the HDHT. Another

tradeoff arises while trying to minimize the latency stretch and the number of

migrations: groups may be formed in such a way to minimize the introduced

latency stretch. However, the formation of group nodes becomes dependent not

only on the connectivity properties of the nodes, but also on the weight of their

links. Thus, when the links’ weight changes new migrations may be required.

The second direction is to relax the definition of a hierarchical architecture by

removing the connectivity constraint: instead of requiring a group node to be in-

ternally connected through physical paths, we allow the use of virtual circuits, or

in another words, group nodes are created on a routing overlay imposed on the

physical network. Relaxing the connectivity constraint simplifies many dynamics

of the topology maintenance. However, if the overlay is not carefully constructed,

the latency stretch may increase rapidly.

The approach of creating unconnected group nodes that minimize the latency

stretch is strictly related to a current research field called Name-independent Com-

pact Routing [31][32]. The Compact Routing problem is to construct a routing

scheme that minimize both the latency stretch and the size of the routing tables.

One scheme that is similar to our relaxed hierarchical architecture is “Generalized

routing scheme for Õ(N1/2) space”, presented in [34].

We note, however, that the current compact routing schemes do not solve the

original objective of constructing self-configuring scalable mesh networks. In fact,

they assume that the network is static. The design of an efficient dynamic scheme

that is updated incrementally as the network evolves is currently an open pro-

blem, although some lower bounds for the involved communication cost are already

known[36],[37].

54

Bibliography

[1] I.F. Akyildiz, X. Wang and W. Wang, Wireless mesh networks: a survey,
Computer Networks Journal 47 (2005) (4), pp. 445-487.

[2] Fotios A. Elianos, Georgia Plakia, Pantelis A. Frangoudis and George C.
Polyzos (2009) Structure and Evolution of a Large-Scale Wireless Community
Network
http://mm.aueb.gr/publications/2009-WOWMOM-WCN.pdf

[3] B. Milic and M. Malek. Analyzing large scale real-world wireless multihop
network. IEEE Communication Letters, 2007

[4] G. Bernardi, P. Buneman, and M. K. Marina. Tegola Tiered Mesh Network
Testbed in Rural Scotland. In WiNS-DR’08, San Francisco, CA, USA, Septem-
ber 2008.

[5] S. Srivathsan, N. Balakrishnan, and S.S. Iyengar Scalability in Wireless Mesh
Networks. Guide to Wireless Mesh Networks, pp. 325-437, Springer

[6] L. Kleinrock and F. Kamoun, Hierarchical routing for large networks. Com-
puter Networks, Vol. 1, No. 3, pp. 155-174.

[7] D. Krioukov and kc claffy. Toward compact interdomain routing.
arXiv:cs.NI/0508021.

[8] L. Kleinrock and J. Sylvester, Optimum transmission radii for packet radio
networks or why six is a magic number, Proc. IEEE National Telecommuni-
cations Conference, Birmingham, AL, December 1978, pp. 4.3.1-4.3.5.

[9] Jakob Eriksson, Michalis Faloutsos, Srikanth Krishnamurthy. Routing Scala-
bility in MANETs, University of California, Riverside.

[10] G. Pei, M. Gerla, and X. Hong. Lanmar: Landmark routing for large scale
wireless ad hoc networks with group mobility. In ACM MobiHOC’00, 2000.

55

http://mm.aueb.gr/publications/2009-WOWMOM-WCN.pdf

[11] S. Du, A. Khan, S. PalChaudhuri, A. Post, A.K. Saha, P. Druschel, D.B.
Johnson, and R. Riedi, Safari: A Self-Organizing Hierarchical Architecture
for Scalable Ad Hoc Networking, Ad Hoc Networks J., 2007

[12] R. Ramanathan and M. Steenstrup, Hierarchically-organized, multihop mobile
wireless networks for quality-of-service support, ACM/Baltzer Mobile Net-
works and Applications, Vol. 3 (1998), pp. 101-119.

[13] A.D. Amis, R. Prakash, T.H.P. Vuong, and D.T. Huynh, Max-Min D-Cluster
Formation in Wireless Ad Hoc Networks, Proc. IEEE Infocom, pp. 32-41,
2000

[14] J. Eriksson, M. Faloutsos, and S. Krishnamurthy. Scalable ad hoc routing: The
case of dynamic addressing. In Proc. IEEE INFOCOM, Hong Kong, China,
Mar 2004.

[15] J. Eriksson, M. Faloutsos, and S. Krishnamurthy, Dart: dynamic address
routing for scalable ad hoc and mesh networks, IEEE/ACM Transactions on
Networking, vol. 15, no. 1, pp. 119132, 2007.

[16] Andrea Lo Pumo, Netsukuku topology,
http://netsukuku.freaknet.org/doc/main_doc/topology.pdf

[17] I. Stoica, R. Morris, D. Lieben-Nowell, D. Karger, M. Kaashoek, F. Dabek, H. Bal-
akrishnan Chord: a scalable peer-to-peer lookup protocol for Internet applications,
IEEE Transactions on Networks, 11(1) 17-32, 2003

[18] Michael Garey and David Johnson, Computers and Intractability - A Guide to the
Theory of NP-completeness; Freeman, 1979.

[19] John Sucec, Ivan Marsic. Hierarchical routing overhead in mobile ad hoc networks.
Mobile Computing, IEEE Transactions on, 3, Jan 2004

[20] F. G. Nocetti, J. S. Gonzalez, I. Stojmenovic, Connectivity based k-hop clustering
in wireless networks, Telecommunication Systems 22 (2003) 1-4, 205-220, 2003.

[21] S. Banerjee and S. Khuller, A Clustering Scheme for Hierarchical Control in Multi-
hop Wireless Networks, in Proceedings of IEEE INFOCOM, April 2001.

[22] Bradford L. Chamberlain. Graph Partitioning Algorithms for Distributing Work-
loads of Parallel Computations. Technical Report UW-CSE-98-10-03, University of
Washington, October 1998.

[23] W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.
The Bell System Technical Journal, 49:291-307, February 1970.

[24] Leslie Lamport, Paxos made simple. ACM SIGACT News (Distributed Computing
Column) 32 (2001) 18-25

56

http://netsukuku.freaknet.org/doc/main_doc/topology.pdf

[25] Muthitacharoen Athicha, Gilbert Seth, Morris Robert. Etna: a Fault-tolerant Al-
gorithm for Atomic Mutable DHT Data, CSAIL Technical Report

[26] J. Sucec and I. Marsic, Location management handoff overhead in hierarchically
organized mobile ad hoc networks, Proc. Workshop on Parallel and Distributed
Computing Issues in Wireless Networks and Mobile Computing, 19 April 2002.

[27] P. Erdös and A. Rényi, Publ. Math. Debrecen 6, 290 1959.

[28] Chen Avin, Distance graphs: from random geometric graphs to Bernoulli graphs
and between, Proceedings of the fifth international workshop on Foundations of
mobile computing, August 18-21, 2008, Toronto, Canada

[29] Albert R. and Barabási A.-L., Statistical mechanics of complex networks, Rev. Mod.
Phys. 74, 47-97 (2002).

[30] NetworkX Python library http://networkx.lanl.gov/

[31] Dima Krioukov, kc claffy, Kevin Fall, and Arthur Brady. On Compact Routing for
the Internet. ACM SIGCOMM Computer Communication Review (CCR), Vol. 37,
No. 3, 2007.

[32] Papadimitriou, D. and NV, A.L.B. Compact Routing: Challenges, Perspectives,
and Beyond.
http://streaming.info.ucl.ac.be/data/grascomp/pdf/
TFISS09-Papadimitriou.pdf

[33] I.Abraham, C.Gavoille, D.Malkhi, N.Nisan, and M.Thorup. Compact name-
independent routing with minimum stretch. ACM SPAA, 2004.

[34] Arias M., Cowen L. J., Laing K. A., Rajaraman R., and Taka O. Compact routing
with name independence. In Proceedings of the 15th annual ACM Symposium on
Parallel Algorithms and Architectures. 2003. ACM, New York, 184192

[35] M. Thorup and U. Zwick. Approximate distance oracles. In Proc. 33rd ACM Symp.
on Theory of Computing, pp. 183-192, May 2001.

[36] Y.Afek, E.Gafni, and M.Ricklin, Upper and lower bounds for routing schemes in
dynamic networks, In Proc. of FOCS, 1989.

[37] A.Korman and D.Peleg, Dynamic routing schemes for general graphs, In Proc. of
ICALP 2006, Part I, LNCS 4051, pp. 619-630, Springer-Verlag Berlin Heidelberg
2006.

57

http://networkx.lanl.gov/
http://streaming.info.ucl.ac.be/data/grascomp/pdf/TFISS09-Papadimitriou.pdf
http://streaming.info.ucl.ac.be/data/grascomp/pdf/TFISS09-Papadimitriou.pdf

Appendix

Proof of Proposition 5.1.2, pp. 35
Fix S0 = 1 and consider the PB-rule first.

Each time one node is added in g, a shortest migration path is selected, i.e. for
each addition 1 ≤ i ≤ s we have a path

P i = (pi1, . . . , p
i
mi

)

length(P i) = mi

pi1 = g ∀i
We prove by induction on i that if i ≤ D, then

1. i > 1⇒ mi−1 ≤ mi ≤ mi−1 + 1

2.

2.0 pi1 = g

2.1 |pij| = a+ 1 ∀2 ≤ j ≤ mi − 1

2.2 after the migrations of P i, we have |g| = a+ 1

3. Before the i-th node is added, we have

3. 3.0 |pimi
| = a

3. after, we have:

3. 3.1 |pimi
| = a+ 1

3. 3.2 fi :
{
P k | k ≤ i

}
−→ {h ∈ [G]l | |h| = a+ 1} is a bijection:

3. 3.3 P k = (pk1, . . . , p
k
mk

) 7→ pkmk

3. 3.3 i = |
{
P k | k ≤ i

}
| = | {h ∈ [G]l | |h| = a+ 1} |

4. M i = mi − 1 is the number of migrations caused by the addition of the i-th node

If i = 1, the new size of g is a+ 1. The size of all the other gnodes is still a. Thus,
P 1 = (g,) and m1 = 1, M1 = 0. Also, 3. is true.
Consider the case i + 1. Let P i+1 be any shortest migration path. By induction,
before adding the new i + 1-th node, the size of a gnode is either a or a + 1 and
|g| = a+ 1.

58

By definition of migration path, we have:
pi+1

1 = g, |g| = a+ 2

|pi+1
j | = a+ 1 ∀j ≤ mi+1 − 1

|pi+1
mi+1
| = a (0)

Such a P i+1 exists: if, by contradiction, all the nodes have size a+ 1, then each of
them has been already reached by a migration path, i.e. by 3. we have i = |[G]l|,
but

D =
m∑
i=1

Di = |[G]l|

i+ 1 ≤︸︷︷︸
by hypothesis

D ⇒ i ≤ |[G]l| − 1

which contradicts i = |[G]l|.
By 2., 3.0, 3.1 and (0), the gnode pi+1

mi+1
cannot be any of the gnodes reached by

previous migration paths, so
|
{
P k | k ≤ i+ 1

}
| = |

{
P k | k ≤ i

}
|+ 1 = i+ 1

After adding the new node, the migrations occur and we have:
pi+1

1 = g, |g| = a+ 1

|pi+1
j | = a+ 1 ∀j ≤ mi+1 − 1

|pi+1
mi+1
| = a+ 1

At least, mi+1 − 1 migrations have occurred to let one node migrate from pi+1
j to

pi+1
j+1 ∀j ≤ mi+1 − 1. Finally, by Prop. 3.4.5, these are the only migrations that

have occurred, thus no other gnode apart from pi+1
mi+1

has increased its size. Thus,
2., 3., 4. are true. We now prove that also 1. is true,
|pi+1
mi+1−1| = a+ 1 ⇒︸︷︷︸

3.2

∃! P j : pjmj
= pi+1

mi+1−1, with j ≤ i

P i+1 is a shortest migr. path ⇒ mj ≥ mi+1 − 1

mi ≥︸︷︷︸
j≤i, inductive Hp

mj ≥ mi+1 − 1⇒ mi + 1 ≥ mi+1

It is impossible that mi+1 < mi, otherwise P i is not a shortest migr. path ⇒
⇒ mi ≤ mi+1

If D ≥ i ≥
∑q

j=1Dj the number of migration paths of length j ≤ q is equal to

59

Dj (1):
let f be the restriction of fi to

{
P k | k ≤ i, mk = j

}
f :
{
P k | k ≤ i, mk = j

}
−→ Dj is a bijection:

|g| = a+ 1, ∀h ∈ [G]l a ≤ |h| ≤ a+ 1

P k is a shortest migration path

⇒ P k is a shortest path ⇒ f(P k) = pkmk
∈ Dmk

= Dj

f is injective ⇒ f injective

from i ≥
q∑
j=1

Dj and 1., 3.3, it follows that f is surjective

By 4., the number of migrations after the s-th node has been added is:

M(s) =
s∑
i=1

(mi − 1) (5)

If s ≤ D, with (1) we can collect the terms in (5) by length:

M(s) =
m′∑
j=1

(j − 1)Dj + ((m′ + 1)− 1)r′

where m′ = max

{
m′ ≤ m | s−

m′∑
k=1

Di ≥ 0

}
, r′ = s−

m′∑
k=1

Dk∑m′

j=1(j − 1)Dj are the migrations required to increase the size of all the gnodes
reachable in at most m′ hops. Each time we add a node in one of these gnodes,
we are using a path of length j and thus the required migrations are j − 1. r′ is
the number of gnodes reachable in m′ + 1 hops that we can still enlarge.
Finally, notice that if s = D = |[G]l|,

s = D =
m∑
k=1

Dk

m′ = m = max length(Path([G]l)), r′ = 0

M(s) =
m∑
j=1

(j − 1)Dj

and, after the migrations, all the gnodes have size a + 1. Thus, the same initial
situation has been reached again. In the case of any new addition, we can reapply
the same reasoning. So, if s = qD is a multiple of D:

M(s) = q
m∑
j=1

(j − 1)Dj

60

In general, considering the remainder r of s/D, we have:

M(s) =
[s
D

] m∑
j=1

(j − 1)Dj +
m′∑
j=1

(j − 1)Dj + ((m′ + 1)− 1)r′

where m′ = max

{
m′ | r −

m′∑
k=1

Di ≥ 0

}

r′ = r −
m′∑
k=1

Dk

The formula for the LM-rule, can be derived with a similar reasoning. The main
difference is that we can think of adding S − a nodes each time. Another way
to derive it is to notice that the LM-rule is equivalent to an application of the
PB-rule on the graph obtained from [G]l by substituting a gnode h 6= g with S−a
identical copies (i.e. nodes with the same edges of h). In the new graph, Enew

i is
equal to (S − a)Eold

i ∀i = 1, . . . ,m.
Finally, the simplification of the LM formula is derived as follow: we cannot add
more than (S − a)|[G]l| = (S − a)N = D nodes, thus we have s ≤ D, and

[s/D] = 0, r = s

M(s) =
m′∑
j=1

(j − 1)Dj +m′r′

m′ = max

{
m′ | s−

m′∑
k=1

Di ≥ 0

}
, r′ = s−

m′∑
k=1

Dk

Proof of Corollary 5.1.3, pp. 36
Recall from the previous proof that if s ≤ N ,

M(s) =
s∑
i=1

(mi − 1)

length(P i) = mi ≤ mi+1 ≤ mi + 1 ∀i = 1, . . . , s− 1

Since s ≤ N = N , the same is true for M and mi.
By induction on i, we prove that mi ≥ mi ∀i = 1, . . . , N . This suffices to show
that M(s) ≤M(s), also when s > N .
Base case:

P 1 = (g,), P
1

= (g,) ⇒ m1 = 1 = m1

Suppose mi ≥ mi is true. Since mi ≤ mi+1 ≤ mi + 1 we have two cases
Case: mi+1 = mi

mi+1 = mi ≤ mi ≤ mi+1

61

Case: mi+1 = mi + 1
Since 1 = m1 ≤ m2 ≤ · · · ≤ mN and mi+1 ≤ mi + 1, we have

i =

mi−1∑
j=1

νj + ρ(mi, i)

where νj =
∣∣∣ {k ≤ N | mk = j

} ∣∣∣, ρ(q, i) =
∣∣∣ {k ≤ i | mk = q}

∣∣∣
and analogously,

i =

mi−1∑
j=1

νj + ρ(mi, i)

where νj =
∣∣∣ {k ≤ N | mk = j}

∣∣∣, ρ(q, i) =
∣∣∣ {k ≤ i | mk = q}

∣∣∣
Notice that

νmi
≥ ρ(mi, i)

Recall that the number of all migration paths of length j is equal to the
number of gnodes of [G]l reachable in j hops:

νj = Ej
Analogously for G:

νj = Ej = Ej + hj = νj + hj
We are under the hypothesis mi+1 = mi + 1, thus

i+ 1 =

mi+1−1∑
j=1

νj + ρ(mi+1, i+ 1) =

mi∑
j=1

νj + ρ(mi+1, i+ 1) >︸︷︷︸
ρ≥1

mi∑
j=1

νj =

=

mi∑
j=1

νj +

mi∑
j=1

hj︸ ︷︷ ︸
≥0

≥
mi∑
j=1

νj (∗)

mi+1 ≥ mi ≥ mi, and it’s impossible that mi+1 = mi in fact:

i+ 1 >︸︷︷︸
(∗)

mi∑
j=1

νj =︸︷︷︸
mi+1=mi

mi+1∑
j=1

νj ≥
mi+1−1∑
j=1

νj + ρ(mi+1, i+ 1) = i+ 1

i+ 1 > i+ 1 contradiction

thus mi+1 ≥ mi + 1 = mi+1

Proof of Proposition 5.3.1, pp. 48

We examine what happens when a new event occurs1. With G we indicate the

1we will indicate with xt an object preceding the event and with xt+1 the same object after
the event

62

network where we apply the rules at all levels, with G′ we indicate the same
network but with the rules applied at level 1 only.
First observe that the graph formed by group nodes of level 1 is the same in
M and M ′, that is [G]1 is isomorphic to [G′]1. This is true when no event has
occurred because no rules have been applied yet. Suppose that a balancing
rule forces a migration of a gnode g of level l. If l > 1, then by proposition
[3.3.2,pg.22] [G]1 does not change: [Gt]1 = [Gt+1]1. Also [G′]1 does not change,
in fact, by hypothesis no balancing rules have been applied. Since by induction
hypothesis [Gt]1 ' [G′t]1, we also have [Gt+1]1 ' [G′t+1]1. If l = 0, then the same
rules apply both to [G]1 and [G′]1. Finally, if l = 1, by Prop. 3.3.2 [Gt]1 and
[Gt+1]1 are isomorphic, while by hypothesis [G′t]1 = [G′t+1]1.
Let’s suppose at first that the network was connected before the event.

Case: A new node x joins the network
Case: There exists a free gnode g of level 1

Since in G′ there are no higher level groups, x will be able to create g
without violating the connectivity constraint. Instead, in G, if x is not
linked to some nodes of up(g), some migrations may be forced in order
to let x join. Thus, M ′

t+1 = M ′
t ≤Mt ≤Mt+1.

Case: There are no free gnodes of level 1
In this case, either x joins to a neighboring gnode, causing no migrations,
or the balancing rules establish a migration path. All the gnodes of level
≥ 2 are full, the migration path is formed by gnodes of level 1 and only
single nodes migrate. Since [G]1 ' [G′]1, the migration path will be the
same in G and G′ and also the number of migrations will be equal.

Case: New links are established
Since the network is connected, the addition of new links do not cause any
migration.

Case: Some links become broken
Migrations occur if a group node becomes disconnected. If no gnode of
level 1 is split, then the only migrations will occur at level ≥ 2. Thus
M ′

t+1 = M ′
t ≤ Mt ≤ Mt+1. Instead, suppose a gnode g of level 1 is split.

Then δ single nodes of g will migrate and M ′
t+1 = M ′

t +δ. These migrations
are the same in G and G′ because [G]1 ' [G′]1. However, in G′ the split
may also induce a split of a higher gnode of g. Thus Mt+1 ≥ Mt + δ. In
conclusion:

M ′
t+1 = M ′

t + δ ≤Mt + δ ≤Mt+1

Case: A node is removed
This case is reduced to the case where all the node’s links are removed.

Finally, when the network is not initially connected, we have also to consider the
case of network merging: two connected components may become linked due to

63

a new link or a new node. When this happens, by the network merging rules,
all the nodes of one component G1 will have to migrate into the other G2. Then
this case can be viewed as |G1| node additions into the network G2, which is a
case that was already covered.

64

	Introduction
	Methodology

	Hierarchical Networks
	Background and Related Works
	Hierarchical Model
	Routing
	Hierarchical Distributed Hash Table

	Balancing the Address Space
	Related Problems and Works
	Dynamic Balance
	Higher Levels
	Virtual Nodes
	Last Minute and Preemptive Balancing

	Distributed Balancing Rules
	The Memory of a Group
	Gnode Split
	Network ID and Network Merging

	The Cost of Balance
	Number of Migrations
	Simulation
	First Experiment
	Second Experiment

	Bounds on the Number of Migrations
	Discussion

	Conclusion and Future Research

